The Visual Computer

, Volume 26, Issue 2, pp 83–96 | Cite as

Detail-driven digital hologram generation

Original Article

Abstract

Digital holography is a technology with a potential to provide realistic 3D images. However, generation of digital holograms is a computationally demanding task. Thus, the performance is a major concern. We propose a new method that reduces spatial resolution in order to accelerate hologram generation. It employs the propagation between parallel planes for efficient optical field values evaluation and a computer graphics approach for approximating visibility. Our results show that the proposed reduction has only a minimal impact on the visual quality, while the formal computational complexity confirms performance improvement.

Keywords

Digital holography Hologram generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahrenberg, L., Benzie, P., Magnor, M., Watson, J.: Computer generated holography using parallel commodity graphics hardware. Opt. Express 14(17), 7636–7641 (2006) CrossRefGoogle Scholar
  2. 2.
    Ahrenberg, L., Benzie, P., Magnor, M., Watson, J.: Computer generated holograms from three dimensional meshes using an analytic light transport model. Appl. Opt. 47(10), 1567–1574 (2008) CrossRefGoogle Scholar
  3. 3.
    Blinn, J.: Models of light reflection for computer synthesized pictures. SIGGRAPH Comput. Graph. 11(2), 192–198 (1977) CrossRefGoogle Scholar
  4. 4.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (2005) Google Scholar
  5. 5.
    Esmer, G., Onural, L.: Computation of holographic patterns between tilted planes. In: Holography 2005, vol. 6252, p. 62521. SPIE, Bellingham (2006) Google Scholar
  6. 6.
    Frigo, M., Johnson, S.G.: Fftw. http://www.fftw.org/
  7. 7.
    Fujimoto, A., Tanaka, T., Iwata, K.: Arts: Accelerated ray-tracing system. IEEE Comput. Graph. Appl. 6(4), 16–26 (1986) CrossRefGoogle Scholar
  8. 8.
    Gabor, D.: Microscopy by reconstructed wavefronts. R. Soc. Lond. Proc. Ser. A 197, 454–487 (1949) MATHCrossRefGoogle Scholar
  9. 9.
    Goodman, J.: Introduction to Fourier Optics, 3rd edn. Roberts & Company Publishers (2005) Google Scholar
  10. 10.
    Hariharan, P.: Optical Holography: Principles, Techniques and Applications, 2nd edn. Cambridge University Press, Cambridge (1996) Google Scholar
  11. 11.
    Ito, T., Masuda, N., Yoshimura, K., Shiraki, A., Shimobaba, T., Sugie, T.: Special-purpose computer horn-5 for a real-time electroholography. Opt. Express 13(6), 1923–1932 (2005) CrossRefGoogle Scholar
  12. 12.
    Janda, M., Hanák, I., Onural, L.: Hologram synthesis from photorealistic reconstruction. J. Opt. Soc. Am. A 25(12), 3038–3096 (2008) CrossRefGoogle Scholar
  13. 13.
    Kang, H., Yamaguchi, T., Yoshikawa, H.: Accurate phase-added stereogram to improve the coherent stereogram. Appl. Opt. 47(19), D44–D54 (2008) CrossRefGoogle Scholar
  14. 14.
    Kang, H., Yamaguchi, T., Yoshikawa, H.: Gpu-based acceleration method for coherent holographic stereogram calculation. In: Proc. of Biomedical Optics (2008) Google Scholar
  15. 15.
    Kim, H., Hahn, J., Lee, B.: Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography. Appl. Opt. 47(19), D117–D127 (2008) CrossRefGoogle Scholar
  16. 16.
    Lesem, L., Hirsch, P., Jordan, J.: Computer synthesis of holograms for 3-d display. Commun. ACM 11(10), 661–673 (1968) CrossRefGoogle Scholar
  17. 17.
    Lucente, M.: Diffraction-specific fringe computation for electro-holography. Ph.D. thesis, MIT (1994) Google Scholar
  18. 18.
    Lucente, M., Galyean, T.A.: Rendering interactive holographic images. In: SIGGRAPH’95, pp. 387–394 (1995) Google Scholar
  19. 19.
    Masuda, N., Ito, T., Tanaka, T., Shiraki, A., Sugie, T.: Computer generated holography using parallel commodity graphics hardware. Opt. Express 14(2), 603–608 (2006) CrossRefGoogle Scholar
  20. 20.
    Matsushima, K.: Computer-generated holograms for three-dimensional surface objects with shade and texture. Appl. Opt. 44(22), 4607–4614 (2005) CrossRefGoogle Scholar
  21. 21.
    Matsushima, K.: Exact hidden-surface removal in digitally synthetic full-parallax hologram. In: Practical Holography XIX: Materials and Applications, vol. 5742, pp. 25–32. SPIE, Bellingham (2005) Google Scholar
  22. 22.
    Matsushima, K., Kondoh, A.: A wave optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects. In: Practical Holography XVIII: Materials and Applications, vol. 5290, pp. 90–97. SPIE, Bellingham (2004) Google Scholar
  23. 23.
    Matsushima, K., Takai, M.: Recurrence formulas for fast creation of synthetic three-dimensional holograms. Appl. Opt. 39(35), 6587–6594 (2000) CrossRefGoogle Scholar
  24. 24.
    Nishi, S., Shiba, K., Mori, K., Nakayama, S., Murashima, S.: Fast calculation of computer-generated Fresnel holograms utilizing distributed parallel processing and array operation. Opt. Rev. 12(4), 287–292 (2005) CrossRefGoogle Scholar
  25. 25.
    Petz, C., Magnor, M.: Fast hologram synthesis for 3d geometry models using graphics hardware. In: Practical Holography XVII and Holographic Materials IX, vol. 5005, pp. 266–275. SPIE, Bellingham (2003) Google Scholar
  26. 26.
    Phong, B.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975) CrossRefGoogle Scholar
  27. 27.
    Ritter, A., Böttger, J., Deussen, O., König, M., Strothotte, T.: Hardware-based rendering of full-parallax synthetic holograms. Appl. Opt. 38(11), 1364–1369 (1999) CrossRefGoogle Scholar
  28. 28.
    Tommasi, T., Bianco, B.: Computer-generated holograms of tilted planes by a spatial frequency approach. J. Opt. Soc. Am. A 10, 299–305 (1993) CrossRefGoogle Scholar
  29. 29.
    Underkoffler, J.: Occlusion processing and smooth surface shading for fully computed synthetic holography. Pract. Hologr. XI Hologr. Mater. III 3011, 19–30 (1997) Google Scholar
  30. 30.
    Watt, A.: 3D Computer Graphics, 3rd edn. Addison–Wesley, Reading (2000) Google Scholar
  31. 31.
    Yoshikawa, H., Iwase, S., Oneda, T.: Fast computation of Fresnel holograms employing difference. In: Practical Holography XIV and Holographic Materials VI, vol. 3956, pp. 48–55. SPIE, Bellingham (2000) Google Scholar
  32. 32.
    Ziegler, R., Croci, S., Gross, M.: Lighting and occlusion in a wave-based framework. Comput. Graph. Forum 27(2), 211–220 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations