Advertisement

The Visual Computer

, 26:51 | Cite as

Differential geometry images: remeshing and morphing with local shape preservation

  • Weiliang Meng
  • Bin Sheng
  • Weiwei Lv
  • Hanqiu Sun
  • Enhua Wu
Original Article

Abstract

In this paper, we propose a novel conception of differential geometry images (DGIM), encapsulating differential coordinates to traditional geometry images. DGIM preserves the local geometric characteristics in many graphics applications, such as model remeshing and morphing. The traditional geometry images using Cartesian coordinates require normal maps for correctly rendering models, because they neglect the existence of local geometric details in the image structure, which leads us to compute the normals and curvatures imprecisely. Using our differential geometry images, normals can be reconstructed easily and correctly thereafter normal maps are no longer required. In addition, DGIM can be easily applied to mesh morphing due to its regular topology and well-preserved local details. In this paper, we also demonstrate a variety of plausible mesh morphing results based on DGIM in shape space.

Keywords

Remesh Geometry images Differential coordinates Laplacian matrix Shape space 

References

  1. 1.
    Carmo, M.P.D.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976). Chap. 1, pp. 16–23 zbMATHGoogle Scholar
  2. 2.
    Cheng, H.L., Edelsbrunner, H.: Shape space from deformation. In: Proceeding of Pacific Graphics, pp. 104–113 (1998) Google Scholar
  3. 3.
    Cohen-Or, D., Sorkine, O.: Encoding meshes in differential coordinates. In: (SCCG06) Proceedings of the 22nd Spring Conference on Computer Graphics. ACM, New York (2006) Google Scholar
  4. 4.
    Fallgren, M.: On the robustness of conjugate-gradient methods and quasi-Newton methods. Master’s thesis, Department of Mathematics, Royal Institute of Technology (2006) Google Scholar
  5. 5.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(98), 298–305 (1973) MathSciNetGoogle Scholar
  6. 6.
    Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(4), 231–250 (1997) zbMATHCrossRefGoogle Scholar
  7. 7.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Friedel, I., Schröder, P., Desbrun, M.: Unconstrained spherical parameterization. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches, p. 134. ACM, New York (2005) CrossRefGoogle Scholar
  9. 9.
    Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pp. 358–363. ACM, New York (2003) CrossRefGoogle Scholar
  10. 10.
    Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. ACM Trans. Graph. 21(3), 355–361 (2002) CrossRefGoogle Scholar
  11. 11.
    Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. In: Laurent, P.J., Sablonnière, P., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, Innovations in Applied Mathematics, pp. 153–162. Vanderbilt University Press, Nashville (2000) Google Scholar
  12. 12.
    Ji, J., Wu, E., Li, S., Liu, X.: Dynamic LOD on GPU. In: CGI ’05: Proceedings of the Computer Graphics International 2005, pp. 108–114. IEEE Computer Society, Washington (2005) Google Scholar
  13. 13.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM, New York (2000) CrossRefGoogle Scholar
  14. 14.
    Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 271–278. ACM, New York (2000) Google Scholar
  15. 15.
    Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. 26(3), 64 (2007) CrossRefGoogle Scholar
  16. 16.
    Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004) CrossRefGoogle Scholar
  17. 17.
    Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least-squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002) CrossRefGoogle Scholar
  18. 18.
    Losasso, F., Hoppe, H., Schaefer, S., Warren, J.: Smooth geometry images. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 138–145. Eurographics Association (2003) Google Scholar
  19. 19.
    Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Trans. Graph. 22(3), 340–349 (2003) CrossRefGoogle Scholar
  20. 20.
    Saba, S., Yavneh, I., Gotsman, C., Sheffer, A.: Practical spherical embedding of manifold triangle meshes. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 258–267. IEEE Computer Society, Washington (2005) Google Scholar
  21. 21.
    Sander, P.V., Wood, Z.J., Gortler, S.J., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 146–155. Eurographics Association (2003) Google Scholar
  22. 22.
    Sheffer, A., Gotsman, C., Dyn, N.: Robust spherical parameterization of triangular meshes. Computing 72(1–2), 185–193 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A.: Abf++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005) CrossRefGoogle Scholar
  24. 24.
    Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Tech. report, Pittsburgh, PA, USA (1994) Google Scholar
  25. 25.
    Sorkine, O.: Laplacian mesh processing. Ph.D. thesis, School of Computer Science, Tel Aviv University (2006) Google Scholar
  26. 26.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184. ACM, New York (2004) CrossRefGoogle Scholar
  27. 27.
    Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for mesh encoding. In: SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 42–51. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  28. 28.
    Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans. Graph. 23(3), 853–860 (2004) CrossRefGoogle Scholar
  29. 29.
    Toledo, S.: Taucs: A Library of Sparse Linear Solvers, version 2.2. Available online at http://www.tau.ac.il/~stoledo/taucs/ (Sept. 2003)
  30. 30.
    Wu, J., Liu, X., Wu, E.: Spline-based mesh editing. J. Comput. Aided Des. Comput. Graph. 19(07), 907–912 (2007) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Weiliang Meng
    • 1
  • Bin Sheng
    • 2
  • Weiwei Lv
    • 1
  • Hanqiu Sun
    • 3
  • Enhua Wu
    • 4
    • 5
  1. 1.Inst. of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.Dept. of Computer Science and EngineeringThe Chinese University of Hong KongHong KongChina
  3. 3.The Chinese University of Hong KongHong KongChina
  4. 4.Chinese Academy of SciencesBeijingChina
  5. 5.University of MacauMacauChina

Personalised recommendations