Advertisement

The Visual Computer

, Volume 25, Issue 10, pp 947–958 | Cite as

Performance analysis of a parallel multi-view rendering architecture using light fields

  • Wallace Lages
  • Carlúcio Cordeiro
  • Dorgival Guedes
Original Article
  • 70 Downloads

Abstract

Multiple view rendering is a common problem for applications where multiple users visualize a common dataset, as in multi-player games and collaborative engineering tools. For a system to be able to render a large number of views at interactive rates efficiently, parallel processing is an attractive technique. In this work, we present the implementation of a pipelined multiview light field renderer using a cluster with GPUs and MPI. We discuss the parallelization model and the problem of partitioning the tasks of the pipeline among the cluster machines based on the pipeline model and the costs of the stages. Our solution achieves 83% efficiency with ten machines, against only 11% efficiency of a naive parallelization.

Keywords

Parallel rendering Multiple viewpoint rendering Light field rendering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Annen, T., Matusik, W., Pfister, H., Seidel, H.P.Z.M.: Distributed rendering for multiview parallax displays. Tech. Rep., Mitsubishi Electric Research Laboratories (2006). Distributed Rendering for Multiview Parallax Displays, SPIE Conference Stereoscopic Displays and Virtual Reality Systems XIII, vol. 6055, pp. 231–240, January 2006, SPIE Proceedings Google Scholar
  2. 2.
    Halle, M.: Multiple viewpoint rendering. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 243–254. ACM, New York (1998). doi:http://doi.acm.org/10.1145/280814.280884 CrossRefGoogle Scholar
  3. 3.
    Hasselgren, J., Akenine-Möller, T.: An efficient multi-view rasterization architecture. In: Akenine-Möller, T., Heidrich, W. (eds.) Eurographics Workshop/Symposium on Rendering, pp. 61–72. Eurographics Association, Nicosia (2006). doi:http://doi.acm.org/10.2312/EGWR/EGSR06/061-072 Google Scholar
  4. 4.
    Hübner, T., Zhang, Y., Pajarola, R.: Multi-view point splatting. In: Lee, Y.T., Shamsuddin, S.M.H., Gutierrez, D., Suaib, N.M. (eds.) GRAPHITE, pp. 285–294. ACM, New York (2006) CrossRefGoogle Scholar
  5. 5.
    Stewart, J., Bennett, E., McMillan, L.: Pixelview: A view-independent graphics rendering architecture. In: Akenine-Möller, T., McCool, M. (eds.) Proc. of Graphics Hardware, pp. 75–84 (2004) Google Scholar
  6. 6.
    Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237199 CrossRefGoogle Scholar
  7. 7.
    Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing, pp. 3–20 (1991) Google Scholar
  8. 8.
    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237200 CrossRefGoogle Scholar
  9. 9.
    Yang, J.C., Everett, M., Buehler, C., McMillan, L.: A real-time distributed light field camera. In: Proc. of the 13th Eurographics Workshop on Rendering, Italy, pp. 77–86 (2002) Google Scholar
  10. 10.
    Chai, J.X., Chan, S.C., Shum, H.Y., Tong, X.: Plenoptic sampling. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 307–318. ACM/Addison-Wesley, New York (2000). doi:http://doi.acm.org/10.1145/344779.344932 CrossRefGoogle Scholar
  11. 11.
    Lin, Z., Shum, H.: On the number of samples needed in light field rendering with constant-depth assumption. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-00), pp. 588–597. IEEE, Los Alamitos (2000) Google Scholar
  12. 12.
    Lin, Z., Shum, H.Y.: A geometric analysis of light field rendering. Int. J. Comput. Vis. 58(2), 121–138 (2004). doi:http://dx.doi.org/10.1023/B:VISI.0000015916.91741.27 CrossRefGoogle Scholar
  13. 13.
    Schirmacher, H., Vogelgsang, C., Seidel, H.P., Greiner, G.: Efficient free form light field rendering (2001) Google Scholar
  14. 14.
    Todt, S., Rezk-Salama, C., Kolb, A.: Fast (spherical) light field rendering with per-pixel depth. Tech. Rep., University of Siegen (2007) Google Scholar
  15. 15.
    Ihm, I., Park, S., Lee, R.K.: Rendering of spherical light fields. In: PG ’97: Proceedings of the 5th Pacific Conference on Computer Graphics and Applications, p. 59. IEEE Computer Society, Washington (1997) Google Scholar
  16. 16.
    Shade, J., Lischinski, D., Salesin, D.H., DeRose, T., Snyder, J.: Hierarchical image caching for accelerated walkthroughs of complex environments. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 75–82. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237209 CrossRefGoogle Scholar
  17. 17.
    Jeschke, S., Wimmer, M., Schumann, H., Purgathofer, W.: Automatic impostor placement for guaranteed frame rates and low memory requirements. In: I3D ’05: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 103–110. ACM, New York (2005). doi:http://doi.acm.org/10.1145/1053427.1053444 CrossRefGoogle Scholar
  18. 18.
    Sloan, P.P., Hansen, C.: Parallel lumigraph reconstruction. In: PVGS ’99: Proceedings of the 1999 IEEE Symposium on Parallel Visualization and Graphics, pp. 7–14. IEEE Computer Society, Washington (1999). http://doi.acm.org/10.1145/328712.319331 Google Scholar
  19. 19.
    Strasser, J., Pascucci, V., Ma, K.L.: Multi-layered image caching for distributed rendering of large multiresolution datasets. In: Raffin, B., Heirich, A., Santos, L.P. (eds.) Eurographics Symposium on Parallel Graphics and Visualization, pp. 171–177. Eurographics Association, Braga (2006). doi:http://doi.acm.org/10.2312/EGPGV/EGPGV06/171-177 Google Scholar
  20. 20.
    Wilson, A., Manocha, D.: Simplifying complex environments using incremental textured depth meshes. ACM Trans. Graph. 22(3), 678–688 (2003) doi:http://doi.acm.org/10.1145/882262.882325 CrossRefGoogle Scholar
  21. 21.
    Aliaga, D., Cohen, J., Wilson, A., Baker, E., Zhang, H., Erikson, C., Hoff, K., Hudson, T., Stuerzlinger, W., Bastos, R., Whitton, M., Brooks, F., Manocha, D.: MMR: an interactive massive model rendering system using geometric and image-based acceleration. In: I3D ’99: Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 199–206. ACM, New York (1999). doi:http://doi.acm.org/10.1145/300523.300554 CrossRefGoogle Scholar
  22. 22.
    Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 11–20. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237191 CrossRefGoogle Scholar
  23. 23.
    Heidrich, W., Schirmacher, H., Kück, H., Seidel, H.P.: A warping-based refinement of lumigraphs. In: Thalmann, N., Skala, V. (eds.) Proc. WSCG ’99 (1999) Google Scholar
  24. 24.
    Vogelgsang, C., Greiner, G.: Adaptive lumigraph rendering with depth maps. Technical Report 3, IMMD 9, Universitaet Erlangen-Nuernberg (2000) Google Scholar
  25. 25.
    McMillan, L., Bishop, G.: Plenoptic modeling: An image-based rendering system. Comput. Graph. (Ann. Conf. Ser.) 29, 39–46 (1995) Google Scholar
  26. 26.
    Camahort, E., Lerios, A., Fussell, D.: Uniformly sampled light fields. Tech. Rep., University of Texas at Austin, Austin, TX, USA (1998) Google Scholar
  27. 27.
    Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumigraph rendering. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 425–432. ACM, New York (2001). doi:http://doi.acm.org/10.1145/383259.383309 CrossRefGoogle Scholar
  28. 28.
    Takahashi, K., Naemura, T.: Unstructured light field rendering using on-the-fly focus measurement. In: ICME, pp. 205–208. IEEE, Los Alamitos (2005) Google Scholar
  29. 29.
    McMillan, L.: An image-based approach to three-dimensional computer graphics. Ph.D. Thesis, University of North Carolina at Chapel Hill (1997) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Wallace Lages
    • 1
  • Carlúcio Cordeiro
    • 1
  • Dorgival Guedes
    • 1
  1. 1.Deep Computing Visualization CenterUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations