The Visual Computer

, Volume 25, Issue 8, pp 743–755 | Cite as

Curvature-based anisotropic geodesic distance computation for  parametric and implicit surfaces

  • Joon-Kyung SeongEmail author
  • Won-Ki Jeong
  • Elaine Cohen
Original Article


Distribution of geometric features varies with direction, including, for example, normal curvature. In this paper, this characteristic of shape is used to define a new anisotropic geodesic (AG) distance for both parametric and implicit surfaces. Local distance (LD) from a point is defined as a function of both the point and a unit tangent plane directions, and a total distance is defined as an integral of that local distance. The AG distance between points on the surface is the minimum total distance between them. The path between the points that attains the minimum is called the anisotropic geodesic path. Minimization of total distance to attain the AG distance is performed by associating the LD function with a tensor speed function that controls wave propagation in the convex Hamilton–Jacobi (H–J) equation solver. We present new distance metrics for both parametric and implicit surfaces based on the curvature tensor. In order to solve for the implicit AG, a bounded 3D H–J equation solver was developed. We present a second metric for the AG distance, a difference curvature tensor, for parametric surfaces. Some properties of both new AG distances are presented, including parameterization invariance. This AG path differs from the usual geodesic in that minimal path, i.e., lowest cost path, roughly speaking, minimizes an integral of curvature along the curve. Then, the effectiveness of the proposed AG distances as shape discriminators is demonstrated in several applications, including surface segmentation and partial shape matching.


Anisotropy Parametric and implicit surface Geodesic Normal curvature Tensor H–J equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, D.C., Gee, J.C.: Elastic matching of diffusion tensor images. Comput. Vis. Image Underst. 77(9), 233–250 (2000) CrossRefGoogle Scholar
  2. 2.
    Ankerst, M., Kastenmller, G., Kriegel, H.P., Seidl, T.: 3d shape histograms for similarity search and classification in spatial databases. In: SSD’99, pp. 207–226. Springer, Berlin (1999) Google Scholar
  3. 3.
    Belongie, S., Malik, J., Puzicha, J.: Matching shapes. ICCV 01, 454 (2001) Google Scholar
  4. 4.
    Belyaev, A.G., Pasko, A.A., Kunii, T.L.: Ridges and ravines on implicit surfaces. In: CGI’98, p. 530. IEEE Comput. Soc., Los Alamitos (1998) Google Scholar
  5. 5.
    Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton–Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9(2), 57–69 (2006) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bronstein, A.M., Bronstein, M.M., Devir, Y.S., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. Technical Report (2007) Google Scholar
  7. 7.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Weighted distance maps computation on parametric three-dimensional manifolds. J. Comput. Phys. 225(1), 771–784 (2007) CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, J., Han, Y.: Shortest paths on a polyhedron. Int. J. Comput. Geom. Appl. 6(2), 127–144 (1990) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, D.Y., Ouhyoung, M., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity-based 3d model retrieval. In: Eurographics, pp. 223–232. Granada, Spain (2003) Google Scholar
  10. 10.
    Cheng, S.W., Na, H.S., Vigneron, A., Wang, Y.: Approximate shortest paths in anisotropic regions. In: SODA’07, pp. 766–774. Philadelphia, PA, USA (2007) Google Scholar
  11. 11.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: SIGGRAPH’04: ACM SIGGRAPH 2004 Papers, pp. 905–914. ACM, New York (2004). CrossRefGoogle Scholar
  12. 12.
    DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Trans. Graph 22(3), 848–855 (2003) CrossRefGoogle Scholar
  13. 13.
    Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26(3), 737–761 (2005) CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Elad, A., Kimmel, R.: On bending-invariant signatures for surfaces. IEEE Trans. Pattern. Anal. Mach. Intell. 25(10), 1285–1295 (2003) CrossRefGoogle Scholar
  15. 15.
    Funkhouser, T., Shilane, P.: Partial matching of 3d shapes with priority-driven search. In: Proceedings of Symposium on Geometry Processing, pp. 131–142 (2006) Google Scholar
  16. 16.
    Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph 23(3), 652–663 (2004) CrossRefGoogle Scholar
  17. 17.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph 25(1), 130–150 (2006) CrossRefGoogle Scholar
  18. 18.
    Guillaume, L., Florent, D., Atilla, B.: Curvature tensor-based triangle mesh segmentation with boundary rectification. In: CGI’04, pp. 10–17. IEEE Comput. Soc., Los Alamitos (2004) Google Scholar
  19. 19.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: SIGGRAPH’01, pp. 203–212. ACM, New York (2001) Google Scholar
  20. 20.
    Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph 23(3), 284–293 (2004) CrossRefGoogle Scholar
  21. 21.
    Iyanaga, S., Kawada, Y.: Finsler Spaces. MIT Press, Cambridge (1980) Google Scholar
  22. 22.
    Jeong, W.K., Fletcher, P.T., Tao, R., Whitaker, R.: Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton–Jacobi solver. IEEE Trans. Vis. Comput. Graph. 13(6), 1480–1487 (2007) CrossRefGoogle Scholar
  23. 23.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999) CrossRefGoogle Scholar
  24. 24.
    Kanai, T., Suzuki, H.: Approximate shortest path on polyhedral surface based on selective refinement of the discrete graph and its applications. In: GMP, vol. 2000, p. 241 (2000) Google Scholar
  25. 25.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. In: SIGGRAPH’03, pp. 954–961. ACM, New York (2003) Google Scholar
  26. 26.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Shape matching and anisotropy. In: SIGGRAPH’04, pp. 623–629. ACM Press, New York (2004) Google Scholar
  27. 27.
    Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. In: Proceedings of National Academy of Sciences, pp. 8431–8435 (1998) Google Scholar
  28. 28.
    Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: VIS’03, p. 67. IEEE Comput. Soc., Los Alamitos (2003) Google Scholar
  29. 29.
    Lai, Y.K., Zhou, Q.Y., Hu, S.M., Martin, R.R.: Feature-sensitive mesh segmentation. In: SPM’06, pp. 17–25. ACM, New York (2006) Google Scholar
  30. 30.
    Mangan, A.P., Whitaker, R.T.: Partitioning 3d surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999) CrossRefGoogle Scholar
  31. 31.
    Mémoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173(2), 730–764 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Meyer, M., Kirby, R.M., Whitaker, R.: Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE Trans. Vis. Comput. Graph. 13(6), 1704–1711 (2007) CrossRefGoogle Scholar
  33. 33.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16(4), 647–668 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Page, D.L., Koschan, A.F., Abidi, M.A.: Perception-based 3d triangle mesh segmentation using fast marching watersheds. In: CVPR, vol. 02, p. 27 (2003) Google Scholar
  35. 35.
    Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006) CrossRefGoogle Scholar
  36. 36.
    Pichon, E., Westin, C.F., Tannenbaum, A.: A Hamilton–Jacobi–Bellman approach to high angular resolution diffusion tractography. In: MICCAI, pp. 180–187 (2005) Google Scholar
  37. 37.
    Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application to feature-sensitive morphology on surfaces. In: Computer Vision—ECCV 2004, pp. 18–23 (2004) Google Scholar
  38. 38.
    Prados, E., Soatto, S., Lenglet, C., Pons, J.P., Wotawa, N., Deriche, R., Faugeras, O.: Control theory and fast marching techniques for brain connectivity mapping. In: CVPR’06, pp. 1076–1083 (2006) Google Scholar
  39. 39.
    Razdan, A., Bae, M.: A hybrid approach to feature segmentation of triangle meshes. Comput. Aided Des. 35(9), 783–789 (2003) CrossRefGoogle Scholar
  40. 40.
    Reif, J.H., Sun, Z.: Movement planning in the presence of flows. Algorithmica 39(2), 127–153 (2004) CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Sellen, J.: Direction weighted shortest path planning. In: Proceedings of the ICRA, pp. 1970–1975 (1995) Google Scholar
  42. 42.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. In: Proc. Natl. Acad. Sci., vol. 93, pp. 1591–1595 (1996) Google Scholar
  43. 43.
    Sethian, J.A., Popovici, A.M.: 3-d travel-time computation using the fast marching method. Geophysics 64(2), 516–523 (2006) CrossRefGoogle Scholar
  44. 44.
    Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Sifri, O., Sheffer, A., Gotsman, C.: Geodesic based surface remeshing. In: Proc. 12th International Meshing Roundtable, pp. 189–199 (2003) Google Scholar
  47. 47.
    Skiena, S.S.: The Algorithm Design Manual. Springer, Berlin (2000) Google Scholar
  48. 48.
    Sloan, P.P.J., Charles, F., Rose, I., Cohen, M.F.: Shape by example. In: I3D’01, pp. 135–143. ACM, New York (2001) Google Scholar
  49. 49.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph 24(3), 553–560 (2005) CrossRefGoogle Scholar
  50. 50.
    Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 659–672 (2003) CrossRefMathSciNetGoogle Scholar
  51. 51.
    Watanabe, K., Belyaev, A.: Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum 20, 385–392 (2001) CrossRefGoogle Scholar
  52. 52.
    Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by Gaussian curvature. The Visual Computer 21(8–10), 659–668 (2005) CrossRefGoogle Scholar
  53. 53.
    Zhang, Y., Paik, J., Koschan, A., Abidi, M., Gorsich, D.: A simple and efficient algorithm for part decomposition of 3d triangulated models based on curvature analysis. In: IEEE International conference on Image Processing, pp. 273–276 (2002) Google Scholar
  54. 54.
    Zhou, K., Synder, J., Guo, B., Shum, H.Y.: Iso-charts: stretch-driven mesh parameterization using spectral analysis. In: SGP’04, pp. 45–54. ACM, New York (2004) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.School of ComputingUniversity of UtahSalt Lake CityUSA

Personalised recommendations