Advertisement

The Visual Computer

, Volume 25, Issue 8, pp 731–741 | Cite as

Robust fitting of implicitly defined surfaces using Gauss–Newton-type techniques

  • Martin AignerEmail author
  • Bert Jüttler
Original Article

Abstract

We describe Gauss–Newton-type methods for fitting implicitly defined curves and surfaces to given unorganized data points. The methods are suitable not only for least-squares approximation, but they can also deal with general error functions, such as approximations to the 1 or norm of the vector of residuals. Two different definitions of the residuals will be discussed, which lead to two different classes of methods: direct methods and data-based ones. In addition we discuss the continuous versions of the methods, which furnish geometric interpretations as evolution processes.

It is shown that the data-based methods—which are less costly, as they work without the computation of the closest points—can efficiently deal with error functions that are adapted to noisy and uncertain data. In addition, we observe that the interpretation as evolution process allows to deal with the issues of regularization and with additional constraints.

Keywords

Surface fitting Implicitly defined surfaces Gauss–Newton method General error function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M., Jüttler, B.: Robust computation of foot points on implicitly defined curves. In: Dæhlen, M., Mørken, K., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, Tromsø, 2004, pp. 1–10. Nashboro Press, Brentwood (2005) Google Scholar
  2. 2.
    Aigner, M., Jüttler, B.: Approximation flows in shape manifolds. In: Chenin, P., Lyche, T., Schumaker, L. (eds.) Curve and Surface Design, Avignon, 2006, pp. 1–10. Nashboro Press, Brentwood (2007) Google Scholar
  3. 3.
    Aigner, M., Jüttler, B.: Distance regression by Gauss–Newton-type methods and iteratively re-weighted least-squares. Tech. Rep. 54, FSP S92 “Industrial Geometry” (2007). www.ig.jku.at
  4. 4.
    Aigner, M., Jüttler, B.: Hybrid curve fitting. Computing 79, 237–247 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aigner, M., Šír, Z., Jüttler, B.: Evolution-based least-squares fitting using Pythagorean hodograph spline curves. Comput. Aided Geom. Des. 24, 310–322 (2007) CrossRefGoogle Scholar
  6. 6.
    Al-Subaihi, I., Watson, G.A.: The use of the l 1 and l norms in fitting parametric curves and surfaces to data. Appl. Numer. Anal. Comput. Math. 1, 363–376 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Alhanaty, M., Bercovier, M.: Curve and surface fitting and design by optimal control methods. Comput. Aided Des. 33, 167–182 (2001) CrossRefGoogle Scholar
  8. 8.
    Atieg, A., Watson, G.: Use of p norms in fitting curves and surfaces to data. Aust. New Zealand Ind. Appl. Math. J. 45(E), C187–C200 (2004) MathSciNetGoogle Scholar
  9. 9.
    Blake, A., Isard, M. (eds.): Active Contours. Springer, New York (2000) Google Scholar
  10. 10.
    Carr, J.C. et al.: Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH’01, pp. 67–76 (2001) Google Scholar
  11. 11.
    Feichtinger, R., Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Dual evolution of planar parametric spline curves and T-spline level sets. Comput. Aided Des. 40, 13–24 (2008) CrossRefGoogle Scholar
  12. 12.
    Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24(3), 544–552 (2005) CrossRefGoogle Scholar
  13. 13.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley (1996) Google Scholar
  14. 14.
    Huber, P.J.: Robust Statistics. Wiley, New York (1981) zbMATHCrossRefGoogle Scholar
  15. 15.
    Jüttler, B.: Computational methods for parametric discrete 1 and curve fitting. Int. J. Shape Model. 4, 21–34 (1998) zbMATHCrossRefGoogle Scholar
  16. 16.
    Jüttler, B.: Least-squares fitting of algebraic spline curves via normal vector estimation. In: Proc. of the 9th IMA Conference on the Mathematics of Surfaces, pp. 263–280. Springer, Berlin (2000) Google Scholar
  17. 17.
    Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17, 135–152 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mahadevan, V., Narasimha-Iyer, H., Roysam, B., Tanenbaum, H.L.: Robust model-based vasculature detection in noisy biomedical images. IEEE Trans. Inf. Technol. Biomed. 8(3), 360–376 (2004) CrossRefGoogle Scholar
  19. 19.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003) CrossRefGoogle Scholar
  20. 20.
    Ohtake, Y., Belyaev, A., Seidel, H.P.: 3D scattered data approximation with adaptive compactly supported radial basis functions. In: Proc. SMI’04, pp. 31–39 (2004) Google Scholar
  21. 21.
    Osborne, M.R.: Finite Algorithms in Optimization and Data Analysis. Wiley, New York (1985) zbMATHGoogle Scholar
  22. 22.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002) Google Scholar
  23. 23.
    Pottmann, H., Leopoldseder, S.: A concept for parametric surface fitting which avoids the parametrization problem. Comput. Aided Geom. Des. 343–362 (2003) Google Scholar
  24. 24.
    Pottmann, H., : Industrial geometry: recent advances and applications in CAD. Comput. Aided Des. 37, 751–766 (2005) CrossRefGoogle Scholar
  25. 25.
    Pratt, V.: Direct least-squares fitting of algebraic surfaces. In: SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–152. ACM, New York (1987) CrossRefGoogle Scholar
  26. 26.
    Raviv, A., Elber, G.: Three-dimensional freeform sculpting via zero sets of scalar trivariate functions. In: Proc. 5th ACM Symposium on Solid Modeling and Applications, pp. 246–257 (1999) Google Scholar
  27. 27.
    Rogers, D., Fog, N.: Constrained B-spline curve and surface fitting. Comput. Aided Des. 641–648 (1989) Google Scholar
  28. 28.
    Sampson, P.D.: Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein algorithm. Comput. Graph. Image Process. 18, 97–108 (1982) CrossRefGoogle Scholar
  29. 29.
    Sarkar, B., Menq, C.H.: Parameter-optimization in approximating curves and surfaces to measurement data. Comput. Aided Geom. Des. 267–280 (1991) Google Scholar
  30. 30.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003) CrossRefGoogle Scholar
  31. 31.
    Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 896–904. ACM, New York (2004) CrossRefGoogle Scholar
  32. 32.
    Speer, T., Kuppe, M., Hoschek, J.: Global reparametrization for curve approximation. Comput. Aided Geom. Des. 15 (1998) Google Scholar
  33. 33.
    Tasdizen, T., Tarel, J.P., Cooper, D.: Improving the stability of algebraic curves for applications. IEEE Trans. Image Process. 9(3), 405–416 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991) CrossRefGoogle Scholar
  35. 35.
    Velho, L., Gomes, J., Figueiredo, L.H.: Implicit Objects in Computer Graphics. Springer, New York (2002) zbMATHGoogle Scholar
  36. 36.
    Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by squared distance minimization. ACM Trans. Graph. 25(2) (2006) Google Scholar
  37. 37.
    Watson, G.A.: On two methods for discrete p approximation. Computing 18(3), 263–266 (1977) zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Watson, G.A.: On the Gauss–Newton method for 1 orthogonal distance regression. IMA J. Numer. Anal. 22, 345–357 (2001) CrossRefGoogle Scholar
  39. 39.
    Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: Shape Modeling International, pp. 247–252. IEEE Press, New York (2006) Google Scholar
  40. 40.
    Yang, H., Jüttler, B.: Evolution of T-spline level sets for meshing non-uniformly sampled and incomplete data. Vis. Comput. 24(6), 435–448 (2008) CrossRefGoogle Scholar
  41. 41.
    Yang, Z., Deng, J., Chen, F.: Fitting unorganized point clouds with active implicit B-spline curves. Vis. Comput. 21, 831–839 (2005) CrossRefGoogle Scholar
  42. 42.
    Zeng, H.F., Liu, Z.G., Lin, Z.H.: PDE-driven implicit reconstruction of 3d object. In: CGIV ’05: Proceedings of the International Conference on Computer Graphics, Imaging and Visualization, pp. 251–256. IEEE Computer Society, Los Alamitos (2005) CrossRefGoogle Scholar
  43. 43.
    Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: VLSM ’01: Proc. of the IEEE Workshop on Variational and Level Set Methods, pp. 194–201 (2001) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria

Personalised recommendations