Advertisement

The Visual Computer

, Volume 25, Issue 5–7, pp 529–537 | Cite as

An extended GPU radiosity solver

Including diffuse and specular reflectance and transmission
  • Günter Wallner
Original Article

Abstract

In this paper we present an extended GPU progressive radiosity solver which integrates ideal diffuse as well as specular transmittance and reflection. The solver is capable to handle multiple specular reflections with correct mirror–object–mirror occlusions. The use of graphics hardware allows to consider attenuation of radiation due to reflections and/or transmissions on a per-pixel basis, enabling us to handle multiple specular triangles with different reflection coefficients at once. Alpha masks are used to replace complex geometry in certain cases to reduce computation times. Furthermore, the inclusion of ambient overshooting into the radiosity solver is discussed.

Keywords

Extended radiosity Global illumination GPU programming Interreflections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsi, A., Jakab, G.: Stream processing in global illumination. In: Proceedings of 8th Central European Seminar on Computer Graphics (2004) Google Scholar
  2. 2.
    Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for radiosity and subsurface scattering. In: HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 51–59. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  3. 3.
    Cohen, M.F., Chen, S.E., Wallace, J.R., Greenberg, D.P.: A progressive refinement approach to fast radiosity image generation. In: SIGGRAPH ’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 75–84. ACM Press, New York (1988) CrossRefGoogle Scholar
  4. 4.
    Cohen, M.F., Greenberg, D.P.: The hemi-cube: a radiosity solution for complex environments. In: SIGGRAPH ’85: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–40. ACM Press, New York (1985) CrossRefGoogle Scholar
  5. 5.
    Coombe, G., Harris, M.: Global illumination using progressive refinement radiosity. In: GPU Gems 2, pp. 635–647. Addison-Wesley Professional, Reading (2005) Google Scholar
  6. 6.
    Coombe, G., Harris, M.J., Lastra, A.: Radiosity on graphics hardware. In: GI ’04: Proceedings of Graphics Interface 2004, pp. 161–168. Canadian Human–Computer Communications Society (2004) Google Scholar
  7. 7.
    Feda, M., Purgathofer, W.: Accelerating radiosity by overshooting. In: Third Eurographics Workshop on Rendering, pp. 21–32 (1992) Google Scholar
  8. 8.
    Glaeser, G., Schroecker, H.P.: Reflections on refractions. J. Geom. Graph. 4(1), 1–18 (2000) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B.: Modeling the interaction of light between diffuse surfaces. In: SIGGRAPH ’84: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 213–222. ACM Press, New York (1984) CrossRefGoogle Scholar
  10. 10.
    Gortler, S., Cohen, M., Slusallek, P.: Radiosity and relaxation methods. In: Computer Graphics and Applications, vol. 14, pp. 48–58. IEEE, New York (1994) Google Scholar
  11. 11.
    Hanrahan, P., Salzman, D., Aupperle, L.: A rapid hierarchical radiosity algorithm. SIGGRAPH Comput. Graph. 25(4), 197–206 (1991) CrossRefGoogle Scholar
  12. 12.
    Immel, D.S., Cohen, M.F., Greenberg, D.P.: A radiosity method for non-diffuse environments. SIGGRAPH Comput. Graph. 20(4), 133–142 (1986) CrossRefGoogle Scholar
  13. 13.
    Kautz, J., Lehtinen, J., Aila, T.: Hemispherical rasterization for self-shadowing of dynamic objects. In: Proceedings of Eurographics Symposium on Rendering 2004, pp. 179–184. Eurographics Association, Aire-la-Ville (2004) Google Scholar
  14. 14.
    Leiss, T., Ferschin, P., Purgathofer, W.: Radiosity with textures, specular reflection and transmission. In: Proceedings of the Fourteenth Spring Conference on Computer Graphics, pp. 103–111 (1998) Google Scholar
  15. 15.
    Lengyel, E.: Oblique view frustums for mirrors and portals. In: Game Programming Gems 5. Charles River Media (2005) Google Scholar
  16. 16.
    Li, S.Y., Yang, S.N.: Radiosity for scenes with many mirror reflections. Vis. Comput. 16(8), 481–500 (2000) zbMATHCrossRefGoogle Scholar
  17. 17.
    McReynolds, T., Blythe, D., Grantham, B., Kilgard, M.J.: Advanced graphics programming techniques using OpenGL. In: SIGGRAPH 1999 Course (1999) Google Scholar
  18. 18.
    Modest, M.F.: Radiative Heat Transfer, 2nd edn. Academic Press, New York (2003) Google Scholar
  19. 19.
    Nielsen, K.H., Christensen, N.J.: Fast texture-based form factor calculations for radiosity using graphics hardware. J. Graph. Tools 6(4), 1–12 (2002) Google Scholar
  20. 20.
    Nielsen, K.H., Christensen, N.J.: Real-time recursive specular reflections on planar and curved surfaces using graphics hardware. J. WSCG 10(3), 91–98 (2002) Google Scholar
  21. 21.
    Reinhard, E.: Parameter estimation for photographic tone reproduction. J. Graph. Tools 7(1), 45–52 (2002) zbMATHMathSciNetGoogle Scholar
  22. 22.
    Rushmeier, H.E., Torrance, K.E.: Extending the radiosity method to include specularly reflecting and translucent materials. ACM Trans. Graph. 9(1), 1–27 (1990) zbMATHCrossRefGoogle Scholar
  23. 23.
    Shao, M.Z., Badler, N.I.: A gathering and shooting progressive refinement radiosity method. Technical Report (1993) Google Scholar
  24. 24.
    Sillion, F.X., Arvo, J.R., Westin, S.H., Greenberg, D.P.: A global illumination solution for general reflectance distributions. SIGGRAPH Comput. Graph. 25(4), 187–196 (1991) CrossRefGoogle Scholar
  25. 25.
    Wallace, J.R., Elmquist, K.A., Haines, E.A.: A ray tracing algorithm for progressive radiosity. In: SIGGRAPH ’89: Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques, pp. 315–324. ACM, New York (1989) CrossRefGoogle Scholar
  26. 26.
    Wallner, G.: GPU radiosity for triangular meshes with support of normal mapping and arbitrary light distributions. J. WSCG 16(1–3) (2008) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.University of Applied Arts Vienna, Institute for Art and TechnologyViennaAustria

Personalised recommendations