Interchangeable SPH and level set method in multiphase fluids

  • 169 Accesses

  • 13 Citations


Subgrid-scale fluid is difficult to represent realistically in a grid-based fluid simulation. We show how to describe such small-scale details effectively, even on a coarse grid, by using escaped particles. The simulation of these particles with SPH (smooth particle hydrodynamics) allows the illustration of dynamic and realistic animation of fluids. Particles modeled by SPH have a force which leads them to merge if they are within a certain range. This reduces the accuracy of a simulation. Consequently, aggregated particles which form volumes large enough to be described by the level set method will be simulated inefficiently by particles. We address this problem with a new method in which details too small for the grid are represented by particles, while the level set method with a grid is used to describe merged particles on the grid.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 481–487 (2007)

  2. 2.

    Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proc. of 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 1–8 (2007)

  3. 3.

    Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–16 (1967)

  4. 4.

    Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 971–976 (2007)

  5. 5.

    Desbrun, M., Cani, M.-P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: 6th Eurographics Workshop on Computer Animation and Simulation, pp. 61–76 (1996)

  6. 6.

    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21(3), 736–744 (2002)

  7. 7.

    Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proc. of ACM SIGGRAPH 2001, pp. 23–30 (2001)

  8. 8.

    Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58, 471–483 (1996)

  9. 9.

    Greenwood, S.T., House, D.H.: Better with bubbles: Enhancing the visual realism of simulated fluid. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 287–296 (2004)

  10. 10.

    Hong, J.-M., Kim, C.-H.: Animation of bubbles in liquid. Comput. Graph. Forum (Eurograph. Proc.) 22(3), 253–262 (2003)

  11. 11.

    Hong, J.-M., Kim, C.-H.: Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24(3), 915–920 (2005)

  12. 12.

    Hong, J.-M., Lee, H.-Y., Yoon, J.-C., Kim, C.-H.: Bubbles alive. ACM Trans. Graph. (SIGGRAPH Proc.) 48, 1–4 (2008)

  13. 13.

    Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 335–344 (2006)

  14. 14.

    Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Flowfixer: Using bfecc for fluid simulation. In: Eurographics Workshop on Natural Phenomena 1, p. 2 (2005)

  15. 15.

    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462 (2004)

  16. 16.

    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

  17. 17.

    Müller, M.:, Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003)

  18. 18.

    Magnaudet, J., Eames, I.: The motion of high Reynolds number bubbles in inhomogeneous flow. Annu. Rev. Fluid Mech. 32, 659–708 (2000)

  19. 19.

    Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 237–244 (2005)

  20. 20.

    Stam, J.: Stable fluids. In: In Proc. of ACM SIGGRAPH 1999, pp. 121–128 (1999)

  21. 21.

    Song, O., Shin, H., Ko, H.-S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005)

  22. 22.

    Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. In: EUROGRAPHICS, vol. 22 (2003)

Download references

Author information

Correspondence to Chang-Hun Kim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Below is the link to the electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, H., Hong, J. & Kim, C. Interchangeable SPH and level set method in multiphase fluids. Vis Comput 25, 713–718 (2009) doi:10.1007/s00371-009-0339-z

Download citation


  • Fluid simulation
  • Physically based modeling
  • Bubbles
  • SPH
  • Level set
  • Grid-based simulation
  • Multiphase fluids