The Visual Computer

, Volume 25, Issue 5–7, pp 539–547 | Cite as

High-quality brightness enhancement functions for real-time reverse tone mapping

Original Article

Abstract

This paper presents an automatic technique for producing high-quality brightness-enhancement functions for real-time reverse tone mapping of images and videos. Our approach uses a bilateral filter to obtain smooth results while preserving sharp luminance discontinuities, and can be efficiently implemented on GPUs. We demonstrate the effectiveness of our approach by reverse tone mapping several images and videos. Experiments based on HDR visible difference predicator and on an image distortion metric indicate that the results produced by our method are less prone to visible artifacts than the ones obtained with the state-of-the-art technique for real-time automatic computation of brightness enhancement functions.

Keywords

Brightness enhancement functions Reverse tone mapping Bilateral filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyüz A.O., Fleming, R., Riecke, B.E., Reinhard, E., Bülthoff, H.H.: Do HDR displays support LDR content?: a psychophysical evaluation. ACM TOG 26(3), 38 (2007) Google Scholar
  2. 2.
    Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In: Mustererkennung 1995, 17. DAGM-Symposium, pp. 538–545 (1995) Google Scholar
  3. 3.
    Aydin, T.O.: Personal communication. October 2008 Google Scholar
  4. 4.
    Aydin, T.O., Mantiuk, R., Myszkowski, K., Seidel, H.P.: Dynamic range independent image quality assessment. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pp. 1–10 (2008) Google Scholar
  5. 5.
    Aydin, T.O., Mantiuk, R., Myszkowski, K., Seidel, H.P.: Dynamic range independent metric web site. http://drim.mpi-inf.mpg.de/generator.php (2008)
  6. 6.
    Banterle, F., Ledda, P., Debattista, K., Chalmers, A.: Inverse tone mapping. In: GRAPHITE ’06, pp. 349–356 (2006) Google Scholar
  7. 7.
    Banterle, F., Ledda, P., Debattista, K., Chalmers, A.: Expanding low dynamic range videos for high dynamic range applications. In: Proceeding of Spring Conference on Computer Graphics 2008. ACM, New York (2008) Google Scholar
  8. 8.
    Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983) CrossRefGoogle Scholar
  9. 9.
    Chen, J., Paris, S., Durand, F.: Bilateral grid source code. http://groups.csail.mit.edu/graphics/bilagrid/code.html
  10. 10.
    Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM TOG 26(3), 103 (2007) Google Scholar
  11. 11.
    Didyk, P., Mantiuk, R., Hein, M., Seidel, H.P.: Enhancement of bright video features for HDR displays. Comput. Graph. Forum 27(4), 1265–1274 (2008) CrossRefGoogle Scholar
  12. 12.
    Heidrich, W.: Personal communication. April 2008 (2008) Google Scholar
  13. 13.
    Hoefflinger, B. (ed.): High-Dynamic-Range (HDR) Vision: Microelectronics, Image Processing, Computer Graphics. Springer, Berlin (2007) Google Scholar
  14. 14.
    Li, Y., Sharan, L., Adelson, E.H.: Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. 24(3), 836–844 (2005). doi:http://doi.acm.org/10.1145/1073204.1073271 CrossRefGoogle Scholar
  15. 15.
    Mantiuk, R., Myszkowski, K., Seidel, H.P.: Visible difference predicator for high dynamic range images. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2763–2769 (2004) Google Scholar
  16. 16.
    Mantiuk, R., Myszkowski, K., Seidel, H.P.: HDR Visual Difference Predicator website (notes). http://sourceforge.net/project/showfiles.php?group_id=167984 (2008). Last access, October 2008
  17. 17.
    Meylan, L., Daly, S., Susstrunk, S.: The reproduction of specular highlights on high dynamic range displays. In: IS&T/SID 14th Color Imaging Conference (2006) Google Scholar
  18. 18.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: SIGGRAPH ’02, pp. 267–276 (2002). doi:http://doi.acm.org/10.1145/566570.566575
  19. 19.
    Rempel, A.G., Trentacoste, M., Seetzen, H., Young, H.D., Heidrich, W., Whitehead, L., Ward, G.: Ldr2hdr project website. http://www.cs.ubc.ca/~heidrich/Projects/Ldr2Hdr/
  20. 20.
    Rempel, A.G., Trentacoste, M., Seetzen, H., Young, H.D., Heidrich, W., Whitehead, L., Ward, G.: Ldr2hdr: on-the-fly reverse tone mapping of legacy video and photographs. ACM Trans. Graph. 26(3), 39 (2007) CrossRefGoogle Scholar
  21. 21.
    Smith, S.M., Brady, J.M.: SUSAN: A new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997) CrossRefGoogle Scholar
  22. 22.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV ’98, p. 839 (1998) Google Scholar
  23. 23.
    Wang, L., Wei, L.Y., Zhou, K., Guo, B., Shum, H.Y.: High dynamic range image hallucination. In: Proceedings of Eurographics Symposium on Rendering (2007) Google Scholar
  24. 24.
    Yoshida, A., Mantiuk, R., Myszkowski, K., Seidel, H.P.: Analysis of reproducing real-world appearance on displays of varying dynamic range. Comput. Graph. Forum 25(3), 415–426 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Rafael Pacheco Kovaleski
    • 1
  • Manuel M. Oliveira
    • 1
  1. 1.Instituto de InformáticaUFRGSPorto AlegreBrazil

Personalised recommendations