The Visual Computer

, Volume 25, Issue 5–7, pp 627–635

Interactive skeletonization of intensity volumes

Original Article

Abstract

We present an interactive approach for identifying skeletons (i.e. centerlines) in intensity volumes, such as those produced by biomedical imaging. While skeletons are very useful for a range of image analysis tasks, it is extremely difficult to obtain skeletons with correct connectivity and shape from noisy inputs using automatic skeletonization methods. In this paper we explore how easy-to-supply user inputs, such as simple mouse clicking and scribbling, can guide the creation of satisfactory skeletons. Our contributions include formulating the task of drawing 3D centerlines given 2D user inputs as a constrained optimization problem, solving this problem on a discrete graph using a shortest-path algorithm, building a graphical interface for interactive skeletonization and testing it on a range of biomedical data.

Keywords

Interactive Skeletonization Intensity volumes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeysinghe, S.S., Baker, M., Chiu, W., Ju, T.: Segmentation-free skeletonization of grayscale volumes for shape understanding. In: Shape Modeling and Applications. IEEE International Conference on SMI 2008, pp. 63–71 (2008) Google Scholar
  2. 2.
    Abeysinghe, S.S., Coleman, R., Marsh, M., Ruths, T., Baker, M., Chiu, W., Ju, T.: Gorgon—an interactive molecular modeling system. http://www.cs.wustl.edu/~ssa1/gorgon/
  3. 3.
    Armstrong, C.J., Price, B.L., Barrett, W.A.: Interactive segmentation of image volumes with live surface. Comput. Graph. 31(2), 212–229 (2007) CrossRefGoogle Scholar
  4. 4.
    Barrett, W.A., Mortensen, E.N.: Interactive live-wire boundary extraction. Med. Image Anal. 1(4), 331–341 (1997) CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n–d image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006) CrossRefGoogle Scholar
  6. 6.
    Chiu, W., Baker, M., Jiang, W., Dougherty, M., Schmid, M.: Electron cryomicroscopy of biological machines at subnanometer resolution. Structure (Camb.) 13, 363–372 (2005) CrossRefGoogle Scholar
  7. 7.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997) CrossRefGoogle Scholar
  8. 8.
    Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007) CrossRefGoogle Scholar
  9. 9.
    Deschamps, T., Cohen, L.D.: Minimal paths in 3d images and application to virtual endoscopy. In: ECCV ’00: Proceedings of the 6th European Conference on Computer Vision—Part II, pp. 543–557. Springer, London (2000) Google Scholar
  10. 10.
    Eberly, D., Gardner, R., Morse, B., Pizer, S., Scharlach, C.: Ridges for image analysis. J. Math. Imaging Vis. 4(4), 353–373 (1994) CrossRefGoogle Scholar
  11. 11.
    Falcao, A., Udupa, J., Miyazawa, F.: An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000) CrossRefGoogle Scholar
  12. 12.
    Furst, J.D., Pizer, S.M., Eberly, D.H.: Marching cores: A method for extracting cores from 3d medical images. In: MMBIA ’96: Proceedings of the 1996 Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA ’96), p. 124. IEEE Computer Society, Washington (1996) CrossRefGoogle Scholar
  13. 13.
    Jiang, W., Baker, M.L., Jakana, J., Weigele, P.R., King, J., Chiu, W.: Backbone structure of the infectious 15 virus capsid revealed by electron cryomicroscopy. Nature 451, 1130–1134 (2008) CrossRefGoogle Scholar
  14. 14.
    Ju, T., Baker, M., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Comput. Aided Des. 39(5), 352–360 (2007) CrossRefGoogle Scholar
  15. 15.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3d images. Comput. Vis. Image Underst. 80(2), 130–171 (2000) MATHCrossRefGoogle Scholar
  16. 16.
    Krissian, K., Vaillant, R., Trousset, Y., Malandain, G., Ayache., N.: Automatic and accurate measurement of a cross-sectional area of vessels in 3d x-ray angiography images. In: Proc. of SPIE 2000 (2000) Google Scholar
  17. 17.
    Krissian, K., Kikinis, R., Westin, C.F.: Algorithms for extracting vessel centerlines. Tech. Rep. 0003, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Laboratory of Mathematics in Imaging (2004) Google Scholar
  18. 18.
    Metz, C.T., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G., Niessen, W.: 2008 MICCAI workshop: 3d segmentation in the clinic: A grand challenge II—coronary artery tracking. http://hdl.handle.net/10380/1399
  19. 19.
    Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 191–198. ACM, New York (1995) CrossRefGoogle Scholar
  20. 20.
    Nathan, A., Lee, S.L., Marquez, J., Ju, T., Pryse, K., Elson, E., Genin, G.M.: Active and passive responses of myofibroblasts in response to mechanical stretching in 3d culture. In: Proceedings of the ASME 2008 Summer Bioengineering Conference (SBC2008) (2008) Google Scholar
  21. 21.
    Poon, M., Hamarneh, G., Abugharbieh, R.: Efficient interactive 3d livewire segmentation of complex objects with arbitrary topology. Comput. Med. Imaging Graph. 32(8), 639–650 (2008) CrossRefGoogle Scholar
  22. 22.
    Reniers, D., van Wijk, J., Telea, A.: Computing multiscale curve and surface skeletons of genus 0 shapes using a global importance measure. IEEE Trans. Vis. Comput. Graph. 14(2), 355–368 (2008) CrossRefGoogle Scholar
  23. 23.
    Selle, D., Preim, B., Schenk, A., Peitgen, H.: Analysis of vasculature for liver surgical planning. IEEE Trans. Med. Imaging 21(11), 1344–1357 (2002) CrossRefGoogle Scholar
  24. 24.
    Siddiqi, K., Pizer, S. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Springer, Berlin (2008) MATHGoogle Scholar
  25. 25.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Leipzig (1998) MATHGoogle Scholar
  26. 26.
    Whitaker, R.T., Breen, D.E., Museth, K., Soni, N.: A framework for level set segmentation of volume datasets. In: Volume Graphics (2001) Google Scholar
  27. 27.
    Wong, C.J., Rice, R.L., Baker, N.A., Ju, T., Lohman, T.M.: Probing 3′-ssdna loop formation in E. coli recbcd/recbc-dna complexes using non-natural DNA: A model for “chi” recognition complexes. J. Mol. Biol. 362(1), 26–43 (2006) CrossRefGoogle Scholar
  28. 28.
    Yim, P., Choyke, P., Summers, R.: Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans. Med. Imaging 19(6), 568–576 (2000) CrossRefGoogle Scholar
  29. 29.
    Yu, Z., Bajaj, C.: A structure tensor approach for 3d image skeletonization: Applications in protein secondary structure analysis. Image Processing, 2006 IEEE International Conference, pp. 2513–2516 (8–11 Oct. 2006) Google Scholar
  30. 30.
    Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J.: User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006) CrossRefGoogle Scholar
  31. 31.
    Zhang, H., Maslov, K., Stoica, G., Wang, L.: Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Washington University in St. LouisSt. LouisUSA

Personalised recommendations