The Visual Computer

, Volume 25, Issue 5–7, pp 519–527 | Cite as

Fluid-based hatching for tone mapping in line illustrations

  • Afonso Paiva
  • Emilio Vital Brazil
  • Fabiano Petronetto
  • Mario Costa Sousa
Original Article

Abstract

This paper presents a novel meshless, physically-based framework for line art rendering of surfaces with complex geometry and arbitrary topology. We apply an inviscid fluid flow simulation using Smoothed Particles Hydrodynamics to compute the global velocity and cross fields over the surface model. These fields guide the automatic placement of strokes while extracting the geometric and topological coherence of the model. Target tones are matched by tonal value maps allowing different hatching and cross-hatching effects. We demonstrate the simplicity and effectiveness of our method with sample renderings obtained for a variety of models.

Keywords

Non-photorealistic rendering Pen and ink hatching Direction fields Smoothed particles hydrodynamics Computational fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rawson, P.: Drawing. University of Pennsylvania Press, Philadelphia (1987) Google Scholar
  2. 2.
    Hodges, E.: The Guild Handbook of Scientific Illustration, 2nd edn. Wiley, New York (2003) Google Scholar
  3. 3.
    Turk, G.: Texture synthesis on surfaces. In: Proc. of SIGGRAPH ’01, pp. 347–354 (2001) Google Scholar
  4. 4.
    Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. ACM Trans. Graph. 25(4), 1294–1326 (2006) CrossRefGoogle Scholar
  5. 5.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proc. of Symposium on Computer Animation, pp. 154–159 (2003) Google Scholar
  6. 6.
    Stam, J.: Flows on surfaces of arbitrary topology. ACM Trans. Graph. 22(3), 724–731 (2003) CrossRefGoogle Scholar
  7. 7.
    Elber, G.: Line art illustrations of parametric and implicit forms. IEEE Trans. Vis. Comput. Graph. 4(1), 71–81 (1998) CrossRefGoogle Scholar
  8. 8.
    Girshick, A., Interrante, V., Haker, S., Lemoine, T.: Line direction matters: an argument for the use of principal directions in 3D line drawings. In: Proc. of NPAR ’00, pp. 43–52 (2000) Google Scholar
  9. 9.
    Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proc. of SIGGRAPH ’00, pp. 517–526 (2000) Google Scholar
  10. 10.
    Rössl, C., Kobbelt, L., Seidel, H.P.: Line art rendering of triangulated surfaces using discrete lines of curvature. In: Proc. of Winter School of Computer Graphics (WSCG ’00), pp. 168–175 (2000) Google Scholar
  11. 11.
    Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics. World Scientific, Singapore (2005) Google Scholar
  12. 12.
    Winkenbach, G., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: Proc. of SIGGRAPH ’94, pp. 91–100 (1994) Google Scholar
  13. 13.
    Praun, E., Hoppe, H., Webb, M., Finkelstein, A.: Real-time hatching. In: Proc. of SIGGRAPH ’01, pp. 579–584 (2001) Google Scholar
  14. 14.
    Foster, K., Jepp, P., Wyvill, B., Sousa, M.C., Galbraith, C., Jorge, J.A.: Pen-and-ink for BlobTree implicit models. Comput. Graph. Forum 24(3), 267–276 (2005) CrossRefGoogle Scholar
  15. 15.
    Jepp, P., Wyvill, B., Sousa, M.: Smarticles for sampling and rendering implicit models. In: Proc. of Theory and Practice of Computer Graphics (EG-UK TPCG ’06), pp. 39–46 (2006) Google Scholar
  16. 16.
    Secord, A., Heidrich, W., Streit, L.: Fast primitive distribution for illustration. In: Proc. of 13th Eurographics Workshop on Rendering, pp. 215–226 (2002) Google Scholar
  17. 17.
    Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., Gross, M.: A unified Lagrangian approach to solid-fluid animation. In: Symposium on Point-Based Graphics ’05, pp. 125–134 (2005) Google Scholar
  18. 18.
    Paiva, A., Petronetto, F., Lewiner, T., Tavares, G.: Particle-based non-Newtonian fluid animation for melting objects. In: Proc. of XIX Brazilian Symposium on of Computer Graphics and Image Processing (SIBGRAPI ’06), pp. 78–85 (2006) Google Scholar
  19. 19.
    Stora, D., Agliati, P.O., Cani, M.P., Neyret, F., Gascuel, J.D.: Animating lava flows. In: Proc. of Graphics Interface ’99, pp. 203–210 (1999) Google Scholar
  20. 20.
    Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136(1), 214–226 (1997) MATHCrossRefGoogle Scholar
  21. 21.
    Karabassi, E.A., Papaioannou, G., Theoharis, T., Boehm, A.: Intersection test for collision detection in particle systems. J. Graph. Tools 4(1), 25–37 (1999) Google Scholar
  22. 22.
    Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82(1), 1–15 (1989) MATHCrossRefGoogle Scholar
  23. 23.
    Paiva, A., Lopes, H., Lewiner, T., de Figueiredo, L.H.: Robust adaptive meshes for implicit surfaces. In: Proc. of XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI ’06), pp. 205–212 (2006) Google Scholar
  24. 24.
    Ohtake, Y., Belyaev, A.: Dual-primal mesh optimization for polygonized implicit surfaces with sharp features. J. Comput. Inf. Sci. Eng. 2(4), 277–284 (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Afonso Paiva
    • 1
  • Emilio Vital Brazil
    • 2
  • Fabiano Petronetto
    • 3
  • Mario Costa Sousa
    • 4
  1. 1.ICMC (Institute of Mathematics and Computer Science)USPSão CarlosBrazil
  2. 2.IMPA (Institute of Pure and Applied Mathematics)Rio de JaneiroBrazil
  3. 3.Department of MathematicsPUC-RioRio de JaneiroBrazil
  4. 4.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations