The Visual Computer

, Volume 25, Issue 5–7, pp 617–625 | Cite as

Generating anatomical substructures for physically-based facial animation. Part 1: A methodology for skull fitting

  • Olusola O. AinaEmail author
Original Article


Physically-based facial animation techniques are capable of producing realistic facial deformations, but have failed to find meaningful use outside the academic community because they possess the disadvantages of being much harder to create, and even harder to reuse in comparison to other methods of facial animation. As a first step toward a physically-based facial animation system that is truly reusable, this paper outlines a landmark-based process for fitting a generic skull to any given face model, using thin-plate splines and extended kriging predictor deformers, and an interactive scaling technique for incorporating experimentally obtained soft-tissue depth data into the morphing process.


Facial animation Thin-plate splines Kriging Differential geometry Semilandmarks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, F.H., Scheie, H.G.: Adler’s Textbook of Ophthalmology. Saunders, W.B. Co, Philadelphia (1969) Google Scholar
  2. 2.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989) zbMATHCrossRefGoogle Scholar
  3. 3.
    Bookstein, F.L.: Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1(3), 225–243 (1997) CrossRefGoogle Scholar
  4. 4.
    Bui, T.D., Heylen, D.K.J., Nijholt, A., Poel, M.: Exporting vector muscles for facial animation. In: Butz, A., Krüger, A., Olivier, P. (eds.) Smart Graphics 2003, Third International Symposium. Lecture Notes in Computer Science, vol. 2733, pp. 251–259. Springer, Berlin (2003). ISBN=3-540-40557-7 Google Scholar
  5. 5.
    Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Comput. Aided Geom. Des. 22, 121–146 (2005). Conference version: Symp. on Geometry Processing 2003 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables. Lecture Notes in Mathematics, vol. 571, pp. 85–100. Springer, Berlin (1977) CrossRefGoogle Scholar
  7. 7.
    Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans. Graph. 23(1), 45–63 (2004) CrossRefGoogle Scholar
  8. 8.
    Goodall, C.R., Mardia, K.V., Kent, J.T., Little, J.A.: Kriging and splines with derivative information. Biometrika 83(1), 207–221 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gunz, P., Mitteroecker, P., Bookstein, F.L.: Semilandmarks in three dimensions. In: Slice, D.E. (ed.) Modern Morphometrics in Physical Anthropology. Springer, Berlin (2005) Google Scholar
  10. 10.
  11. 11.
  12. 12.
    Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, Oxford (1989) Google Scholar
  13. 13.
    Kähler, K., Haber, J., Yamauchi, H., Seidel, H.-P.: Head shop: generating animated head models with anatomical structure. In: Spencer, S.N. (ed.) Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation, San Antonio, USA, July 2002, pp. 55–64. Association of Computing Machinery (ACM), ACM SIGGRAPH Google Scholar
  14. 14.
    Kent, J.T., Mardia, K.V.: The link between kriging and thin-plate splines. In: Kelly, F.P. (ed.) Statistics and Optimization, pp. 325–339. Wiley, New York (1994). Chap. 24 Google Scholar
  15. 15.
    Kybic, J., Blu, T., Unsel, M.: Generalized sampling: a variational approach. Part I: Theory. IEEE Trans. Signal Process. 50, 1965–1976 (2002) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kybic, J., Blu, T., Unsel, M.: Generalized sampling: a variational approach. Part II: Applications. IEEE Trans. Signal Process. 50, 1977–1985 (2002) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Manhein, M.H., Listi, G.A., Barsley, R.E., Barrow, E.N., Musselman, R., Ubelaker, D.H.: In vivo facial tissue depth measurements for children and adults. J. Forensic Sci. 45(1), 48–60 (2000) Google Scholar
  18. 18.
    Matheron, G.: Splines and kriging; their formal equivalence. In: Merriam, D.F. (ed.) Down-to-Earth Statistics: Solutions Looking for Geological Problems, pp. 77–95. Syracuse University Geology Contributions (1981) Google Scholar
  19. 19.
    Meinguet, J.: Multivariate interpolation at arbitrary points made simple. J. Appl. Math. Phys. 30(2), 292–304 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential geometry operators for triangulated 2-manifolds. In: International Workshop on Visualization and Mathematics, pp. 35–57. Springer, Berlin (2002) Google Scholar
  21. 21.
    Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Shape Modeling and Applications, SMI 2001 International Conference, pp. 89–98 (2001) Google Scholar
  22. 22.
    Olea, R.A.: Geostatistics for Engineers and Earth Scientists. Springer, Berlin (1999) Google Scholar
  23. 23.
    Orvalho, V.C.T.: Reusable facial rigging and animation: create once, use many. PhD thesis, Universitat Politècnica de Catalunya (June 2007) Google Scholar
  24. 24.
    Pyun, H., Kim, Y., Chae, W., Kang, H.W., Shin, S.Y.: An example-based approach for facial expression cloning. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 167–176, Aire-la-Ville, Switzerland, 2003. Eurographics Association Google Scholar
  25. 25.
    Rachidi, T.-E., Coghlan, L., Amar, A.: Accurate measurement of normal vectors and principal curvatures of the left ventricle from mri data using variational calculus. In: Pridmore, T.P., Elliman, D. (eds.) Proceedings of the British Machine Vision Conference 1999, BMVC 1999, Nottingham, 13–16 September 1999, British Machine Vision Association (1999) Google Scholar
  26. 26.
    Taylor, K.T.: Forensic Art and Illustration, 2nd edn. TF-CRC (2000) Google Scholar
  27. 27.
    Turk, G., O’Brien, J.F.: Variational implicit surfaces. Technical report, Georgia Institute of Technology (1999) Google Scholar
  28. 28.
    Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1990) Google Scholar
  29. 29.
    Noh, J.Y., Neumann, U.: Expression cloning. In: Fiume, E. (ed.) SIGGRAPH 2001, Computer Graphics Proceedings, pp. 277–288. ACM Press/ACM SIGGRAPH, New York (2001) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.National Center for Computer AnimationBournemouth UniversityPooleEngland

Personalised recommendations