The Visual Computer

, Volume 25, Issue 9, pp 853–862 | Cite as

In vivo interactive visualization of four-dimensional blood flow patterns

Realtime assessment of volumetric phase contrast MRI
  • Bernhard KainzEmail author
  • Ursula Reiter
  • Gert Reiter
  • Dieter Schmalstieg
Original Article


In this paper we give an overview over a series of experiments to visualize and measure flow fields in the human vascular system with respect to their diagnostic capabilities. The experiments utilize a selection of GPU-based sparse and dense flow visualization algorithms to show the diagnostic opportunities for volumetric cardiovascular phase contrast magnetic resonance imaging data sets. Besides classical hardware accelerated particle and line-based approaches, an extensible tublet-based visualization, a four-dimensional volumetric line integral convolution and a new two-dimensional cutting plane tool for three-dimensional velocity data sets have been implemented. To evaluate the results, several hearts of human subjects have been investigated and a flow phantom was built to artificially simulate distinctive flow features. Our results demonstrate that we are able to provide an interactive tool for cardiovascular diagnostics with complementary hardware accelerated visualizations.


Flow visualization Cardiovascular diagnostics Phase contrast magnetic resonance imaging (PC-MRI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Below is the link to the electronic supplementary material

371_2009_315_MOESM2_ESM.gif (800 kb)
Below is the link to the electronic supplementary material

Below is the link to the electronic supplementary material


  1. 1.
    Angel, E.: Interactive Computer Graphics: A Top-Down Approach Using OpenGL, 4th edn. Addison-Wesley, Reading (2005) Google Scholar
  2. 2.
    Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 263–270. ACM, New York (1993) CrossRefGoogle Scholar
  3. 3.
    Cebral, J., Castro, M., Appanaboyina, S., Putman, C., Millan, D., Frangi, A.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24(4), 457–467 (2005) CrossRefGoogle Scholar
  4. 4.
    Edelman, R.R., Hesselink, J.R., Zlatkin, M.B. III, J.V.C. (eds.): Clinical Magnetic Resonance Imaging, vols. 1–3, 3rd edn. Sauners Elsevier, Philadelphia (2006). URL
  5. 5.
    Gonzalez, E., Schoephoerster, R.: A simulation of three-dimensional systolic flow dynamics in a spherical ventricle: effects of abnormal wall motion. Ann. Biomed. Eng. 24, 48–57 (1996) CrossRefGoogle Scholar
  6. 6.
    Grabner, M., Laramee, R.S.: Image space advection on graphics hardware. In: Jüttler, B. (ed.) SCCG ’05: Proceedings of the 21st Spring Conference on Computer Graphics, pp. 77–84. ACM, New York (2005) CrossRefGoogle Scholar
  7. 7.
    Helgeland, A., Andreassen, O.: Visualization of vector fields using seed lic and volume rendering. IEEE Trans. Vis. Comput. Graph. 10(6), 673–682 (2004) CrossRefGoogle Scholar
  8. 8.
    Kolb, A., Latta, L., Rezk-Salama, C.: Hardware-based simulation and collision detection for large particle systems. In: HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 123–131. ACM, New York (2004) CrossRefGoogle Scholar
  9. 9.
    Kruger, J., Kipfer, P., Kondratieva, P., Westermann, R.: A particle system for interactive visualization of 3d flows. IEEE Trans. Vis. Comput. Graph. 11-6, 744–756 (2005) CrossRefGoogle Scholar
  10. 10.
    Kvitting, J., Ebbers, T., Wingstroem, L., Engvall, J., Olin, C., Bolger, A.: Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J. Thorac. Cardiovasc. Surg. 127, 1602–1607 (2004) CrossRefGoogle Scholar
  11. 11.
    Laramee, R., Hauser, H., Doleisch, H., Vrolijk, B., Post, F., Weiskopf, D.: The state of the art in flow visualization: Dense and texture-based techniques. Comput. Graph. Forum 23(2), 203–221 (2004) CrossRefGoogle Scholar
  12. 12.
    Latta, L.: Building a million particle system. In: Game Developers Conference 2004 (2004). This document is available under the following link:, last visited on January 11th 2009
  13. 13.
    de Leeuw, W., van Liere, R.: Comparing lic and spot noise. In: VIS ’98: Proceedings of the Conference on Visualization ’98, pp. 359–365. IEEE Comput. Soc. Press, Los Alamitos (1998) Google Scholar
  14. 14.
    de Leeuw, W.C., Wijk, J.J.V.: Enhanced spot noise for vector field visualization. In: Visualization Conference, IEEE, p. 233 (1995) Google Scholar
  15. 15.
    Ley, S., Unterhinninghofen, R., Ley-Zaporozhan, J., Schenk, J., Kauczor, H., Szabo, G.: Validation of magnetic resonance phase-contrast flow measurements in the main pulmonary artery and aorta using perivascular ultrasound in a large animal model. Invest. Radiol. 43(6), 421–426 (2008) CrossRefGoogle Scholar
  16. 16.
    Liu, Z., Moorhead, R.J.: Accelerated unsteady flow line integral convolution. IEEE Trans. Vis. Comput. Graph. 11(2), 113–125 (2005) CrossRefGoogle Scholar
  17. 17.
    Markl, M., Alley, M.T., Chan, F.P., Wedding, K.L., Draney, M.T., Elkins, C.J., Parker, D.W., Wicker, R., Taylor, C.A., Herfkens, R.J., Pelc, N.J.: Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging 17, 499–506 (2003) CrossRefGoogle Scholar
  18. 18.
    Merhof, D., Sonntag, M., Enders, F., Nimsky, C., Greiner, G.: Hybrid visualization for white matter tracts using triangle strips and point sprites. IEEE Trans. Vis. Comput. Graph. 12(5), 1181–1188 (2006) CrossRefGoogle Scholar
  19. 19.
    Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P., McGloughlin, T.: 3-d numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 127, 767–775 (2005) CrossRefGoogle Scholar
  20. 20.
    Nerem, R. Jr., Gross, D., Hamlin, R., Geiger, G.: Hot-film anemometer velocity measurements of arterial blood flow in horses. Circ. Res. 34, 193–203 (1974) Google Scholar
  21. 21.
    Reiter, G., Reiter, U., Kainz, B., Greiser, A., Bischof, H., Rienmüller, R.: Mr vector field measurement and visualization of normal and pathological time-resolved three-dimensional cardiovascular blood flow patterns. J. Cardiovasc. Magn. Reson. 9, 237–238 (2007) Google Scholar
  22. 22.
    Reiter, G., Reiter, U., Kovacs, G., Kainz, B., Schmidt, K., Maier, R., Olschewski, H., Rienmueller, R.: Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ. Cardiovasc. Imaging 1(1), 23–30 (2008) CrossRefGoogle Scholar
  23. 23.
    Rezk-Salama, C., Hastreiter, P., Christian, T., Ertl, T.: Interactive exploration of volume line integral convolution based on 3D-texture mapping. In: Ebert, D., Gross, M., Hamann, B. (eds.) IEEE Visualization ’99, pp. 233–240. San Francisco (1999) Google Scholar
  24. 24.
    Schoephoerster, R., Silva, C., Ray, G.: Evaluation of left ventricular function based on simulated systolic flow dynamics computed from regional wall motion. J. Biomech. 27, 125–136 (1994) CrossRefGoogle Scholar
  25. 25.
    Stalling, D., Hege, H.C.: Fast and resolution independent line integral convolution. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–256. ACM, New York (1995) CrossRefGoogle Scholar
  26. 26.
    Taylor, T., Yamaguchi, T.: Flow patterns in three-dimensional left ventricular systolic and diastolic flows determined from computational fluid dynamics. Biorheology 32, 61–71 (1995) Google Scholar
  27. 27.
    Weiskopf, D.: GPU-Based Interactive Visualization Techniques. Springer, Berlin (2007) zbMATHGoogle Scholar
  28. 28.
    Wigstroem, L., Ebbers, T., Fyrenius, A., Karlsson, M., Engvall, J., Wranne, B., Bolger, A.F.: Particle trace visualization of intracardiac flow using time-resolved 3d phase contrast MRI. Magn. Reson. Med. 41, 793–799 (1999) CrossRefGoogle Scholar
  29. 29.
    van Wijk, J.: Spot noise texture synthesis for data visualization. In: SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer graphics and interactive techniques, pp. 309–318. ACM, New York (1991) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bernhard Kainz
    • 1
    Email author
  • Ursula Reiter
    • 2
  • Gert Reiter
    • 3
  • Dieter Schmalstieg
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria
  2. 2.Graz University Clinic of RadiologyGrazAustria
  3. 3.Siemens Healthcare AustriaGrazAustria

Personalised recommendations