Advertisement

The Visual Computer

, Volume 25, Issue 9, pp 835–842 | Cite as

A subject-specific software solution for the modeling and the visualization of muscles deformations

  • Xavier Maurice
  • Anders Sandholm
  • Nicolas Pronost
  • Ronan Boulic
  • Daniel Thalmann
Original Article

Abstract

Today, to create and to simulate a virtual anatomical version of a subject is useful in the decision process of surgical treatments. The muscular activity is one of the factors which can contribute to abnormal movements such as in spasticity or static contracture. In this paper, we propose a numerical solution, based on the Finite Element (FE) method, able to estimate muscles deformations during contraction. Organized around a finite element solver and a volumetric environment, this solution is made of all the modeling and simulation processes from the discretization of the studied domain to the visualization of the results. The choices of materials and properties of the FE model are also presented such as the hyperelasticity, the contention model based on inter-meshes neighboring nodes pairing, and the estimation of nodal forces based on the subject-specific muscular forces and action lines.

Keywords

Muscle deformation Finite element modeling Anatomical human visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Code-Aster Platform: http://www.code-aster.org/
  2. 2.
  3. 3.
    Ansari, M., Lee, S., Cho, C.: Hyperelastic muscle simulation. Key Eng. Mater. 345–346, 1241–1244 (2007) CrossRefGoogle Scholar
  4. 4.
    Beillas, P., Begeman, P., Yang, K., King, A., Arnoux, P., Kang, H., Kayvantash, K., Brunet, C., Cavallero, C., Prasad, P.: Lower limb: advanced FE model and new experimental data. Stapp Car Crash J. 45, 469–494 (2001) Google Scholar
  5. 5.
    Belytschko, T., Chen, J.: Meshfree and Particle Methods. Wiley, New York (2007) Google Scholar
  6. 6.
    Belytschko, T., Liu, W., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2006) Google Scholar
  7. 7.
    Blankevoort, L., Kuiper, J., Huiskes, R., Grootenboer, H.: Articular contact in a three-dimensional model of the knee. J. Biomech. 24(11), 1019–1031 (1991) CrossRefGoogle Scholar
  8. 8.
    Buchler, P., Ramaniraka, N., Rakotomanana, L., Iannotti, J., Farron, A.: A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clin. Biomech. 17, 630–639 (2002) CrossRefGoogle Scholar
  9. 9.
    Crisfield, M.: Non-Linear Finite Element Analysis of Solids and Structures, vols. 1–2 (1997) Google Scholar
  10. 10.
    Delp, S., Loan, J., Hoy, M., Zajac, F., Topp, E., Rosen, J.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990) CrossRefGoogle Scholar
  11. 11.
    Donzelli, P., Spilker, R., Ateshian, G., Mow, V.: Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. J. Biomech. 32(10), 1037–1047 (1999) CrossRefGoogle Scholar
  12. 12.
    Hirokawa, S., Tsuruno, R.: Hyper-elastic model analysis of anterior cruciate ligament. Med. Eng. Phys. 19(7), 637–651 (1997) CrossRefGoogle Scholar
  13. 13.
    James, D., Pai, D.: Dyrt: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) Google Scholar
  14. 14.
    Jonkers, I., Spaepen, A., Papaioannou, G., Steward, C.: Contribution of forward simulation techniques to the understanding of muscle activation patterns in mid-stance phase of gait. J. Biomech. 35(5), 609–619 (2002) CrossRefGoogle Scholar
  15. 15.
    Keyak, J., Skinner, H.: Three-dimensional finite element modelling of bone: effects of element size. J. Biomed. Eng. 14(6), 483–489 (1992) CrossRefGoogle Scholar
  16. 16.
    Mac Donald, B.: Practical Stress Analysis with Finite Elements. Glasnevin Publishing (2007) Google Scholar
  17. 17.
    Macosko, C.: Rheology: Principles, Measurements, and Applications. VCH, New York (1994) Google Scholar
  18. 18.
    Mow, V., Flatow, E., Ateshian, G.: Biomechanics. In: Buckwalter, J.A., Einhorn, T.A., Simon, S.R. (eds.) Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System, 2nd edn. pp. 133–181. American Academy of Orthopaedic Surgeons, USA (2000) Google Scholar
  19. 19.
    Muller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Proceedings of the ACM SIGGRAPH Symposium on Computer Animation, pp. 49–54. ACM, New York (2002) CrossRefGoogle Scholar
  20. 20.
    Muller, M., McMillan, L., Dorsey, J., Jagnow, R.: Real-time simulation of deformation and fracture of stiff materials. In: Computer Animation and Simulation ’01, Eurographics Workshop, pp. 99–111. Eurographics Assoc. (2001) Google Scholar
  21. 21.
    Papaioannou, G., Nianios, G., Mitrogiannis, C., Fyhrie, D., Tashman, S., Yang, K.: Patient-specific knee joint finite element model validation with high-accuracy kinematics from biplane dynamic roentgen stereogrammetric analysis. J. Biomech. 41(12), 2633–2638 (2008) CrossRefGoogle Scholar
  22. 22.
    Scheepers, F., Parent, R., Carlson, W., May, S.: Anatomy-based modeling of the human musculature. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163–172 (1997) Google Scholar
  23. 23.
    Schmid, J., Sandholm, A., Chung, F., Thalmann, D., Delingette, H., Magnenat-Thalmann, N.: Musculoskeletal simulation model generation from MRI data sets and motion capture data. The Visual Computer (2009) Google Scholar
  24. 24.
    Sederberg, T., Parry, S.: Free-form deformations of solid geometric models. Comput. Graph. (SIGGRAPH Proc.) pp. 151–160 (1986) Google Scholar
  25. 25.
    Tang, C., Tsui, C., Stojanovic, B., Kojic, M.: Finite element modelling of skeletal muscles coupled with fatigue. Int. J. Mech. Sci. 49(10), 1179–1191 (2007) CrossRefGoogle Scholar
  26. 26.
    Thalmann, D., Jianhua, S., Chauvineau, E.: Fast realistic human body deformations for animation and VR applications. In: Proceedings. Computer Graphics International. IEEE Comput. Soc. Press (1996) Google Scholar
  27. 27.
    Winters, J.: Hill-based muscle models: A systems engineering perspective. In: Winters, J.M., Woo, S.L.-Y. (eds.) Multiple Muscle Systems: Biomechanics and Movement Organization, pp. 69–93. Springer, Berlin (1990) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Xavier Maurice
    • 1
  • Anders Sandholm
    • 1
  • Nicolas Pronost
    • 1
  • Ronan Boulic
    • 1
  • Daniel Thalmann
    • 1
  1. 1.École Polytechnique Fédérale de Lausanne - VRLabLausanneSwitzerland

Personalised recommendations