The Visual Computer

, Volume 25, Issue 9, pp 883–893 | Cite as

An interactive 3D medical visualization system based on a light field display

  • Marco Agus
  • Fabio Bettio
  • Andrea Giachetti
  • Enrico GobbettiEmail author
  • José Antonio Iglesias Guitián
  • Fabio Marton
  • Jonas Nilsson
  • Giovanni Pintore
Original Article


We present a prototype medical data visualization system exploiting a light field display and custom direct volume rendering techniques to enhance understanding of massive volumetric data, such as CT, MRI, and PET scans. The system can be integrated with standard medical image archives and extends the capabilities of current radiology workstations by supporting real-time rendering of volumes of potentially unlimited size on light field displays generating dynamic observer-independent light fields. The system allows multiple untracked naked-eye users in a sufficiently large interaction area to coherently perceive rendered volumes as real objects, with stereo and motion parallax cues. In this way, an effective collaborative analysis of volumetric data can be achieved. Evaluation tests demonstrate the usefulness of the generated depth cues and the improved performance in understanding complex spatial structures with respect to standard techniques.


3D displays Volume rendering Medical data visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agus, M., Gobbetti, E., Guitián, J.A.I., Marton, F., Pintore, G.: GPU accelerated direct volume rendering on an interactive light field display. Comput. Graph. Forum 27(2), 231–240 (2008) CrossRefGoogle Scholar
  2. 2.
    Balogh, T., Forgacs, T., Agocs, T., Balet, O., Bouvier, E., Bettio, F., Gobbetti, E., Zanetti, G.: A scalable hardware and software system for the holographic display of interactive graphics applications. In: Eurographics Short Papers Proceedings, pp. 109–112 (2005) Google Scholar
  3. 3.
    Bettio, F., Gobbetti, E., Marton, F., Pintore, G.: Scalable rendering of massive triangle meshes on light field displays. Comput. Graph. 32(1), 55–64 (2008) CrossRefGoogle Scholar
  4. 4.
    Boucheny, C., Bonneau, G.P., Droulez, J., Thibault, G., Ploix, S.: A perceptive evaluation of volume rendering techniques. In: Proc. ACM APGV, pp. 83–90 (2007) Google Scholar
  5. 5.
    Bruckner, S., Gröller, M.E.: Style transfer functions for illustrative volume rendering. Comput. Graph. Forum 26(3), 715–724 (2007) CrossRefGoogle Scholar
  6. 6.
    Cossairt, O., Napoli, J., Hill, S., Dorval, R., Favalora, G.: Occlusion-capable multiview volumetric three-dimensional display. Appl. Opt. 46(8), 1244–1250 (2007) CrossRefGoogle Scholar
  7. 7.
    Dodgson, N.A.: Analysis of the viewing zone of the Cambridge autostereoscopic display. Appl. Opt. Opt. Technol. Biomed. Opt. 35(10), 1705–1710 (1996) MathSciNetGoogle Scholar
  8. 8.
    Dodgson, N.A., Moore, J.R., Lang, S.R., Martin, G., Canepa, P.: Time-sequential multi-projector autostereoscopic 3D display. J. Soc. Inf. Disp. 8(2), 169–176 (2000) CrossRefGoogle Scholar
  9. 9.
    Favalora, G., Dorval, R., Hall, D., Napoli, J.: Volumetric three-dimensional display system with rasterization hardware. In: Proc. SPIE, vol. 4297, pp. 227–235 (2001) Google Scholar
  10. 10.
    Favalora, G.E.: Volumetric 3d displays and application infrastructure. Computer 38(8), 37–44 (2005) CrossRefGoogle Scholar
  11. 11.
    Gobbetti, E., Marton, F., Iglesias Guitián, J.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric data sets. Vis. Comput. 24(7–9), 797–806 (2008) CrossRefGoogle Scholar
  12. 12.
    Huebschman, M., Munjuluri, B., Garner, H.: Dynamic holographic 3-d image projection. Opt. Express 11, 437–445 (2003) CrossRefGoogle Scholar
  13. 13.
    Jones, A., McDowall, I., Yamada, H., Bolas, M.T., Debevec, P.E.: Rendering for an interactive 360 degree light field display. ACM Trans. Graph. 26(3), 40 (2007) CrossRefGoogle Scholar
  14. 14.
    Kersten, M., Stewart, J., Troje, N., Ellis, R.: Enhancing depth perception in translucent volumes. IEEE Trans. Vis. Comput. Graph. J. 12(6), 1117–1123 (2006) CrossRefGoogle Scholar
  15. 15.
    McKay, S., Mair, G., Mason, S., Revie, K.: Membrane-mirror based autostereoscopic display for teleoperation and telepresence applications. In: Proc. SPIE, vol. 3957, pp. 198–207 (2000) Google Scholar
  16. 16.
    Mora, B., Ebert, D.S.: Instant volumetric understanding with order-independent volume rendering. Comput. Graph. Forum 23(3), 489–497 (2004) CrossRefGoogle Scholar
  17. 17.
    Napoli, J., Stutsman, S., Chu, J.C.H., Gong, X., Rivard, M.J., Cardarelli, G., Ryan, T.P., Favalora, G.E.: Radiation therapy planning using a volumetric 3-D display: PerspectaRAD, p. 680312. SPIE (2008) Google Scholar
  18. 18.
    Raap, G.B., Koning, A.H., Scohy, T.V., ten Harkel, A.D.J., Meijboom, F.J., Kappetein, A.P., van der Spek, P.J., Bogers, A.J.: Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect. Cardiovasc. Ultrasound 5(8) (2007) Google Scholar
  19. 19.
    Relke, I., Riemann, B.: Three-dimensional multiview large projection system. In: Proc. SPIE, vol. 5664 (2005) Google Scholar
  20. 20.
    Roberts, J.W., Slattery, O.: Display characteristics and the impact on usability for stereo. In: Proc. SPIE, vol. 3957, p. 128 (2000) Google Scholar
  21. 21.
    St.-Hillaire, P., Lucente, M., Sutter, J., Pappu, R., Sparrell, C.G., Benton, S.: Scaling up the MIT holographic video system. In: Proc. 5th SPIE Symposium on Display Holography, pp. 374–380 (1995) Google Scholar
  22. 22.
    Stanley, M., Conway, P., Coomber, S., Jones, J., Scattergood, D., Slinger, C., Bannister, B., Brown, C., Crossland, W., Travis, A.: A novel electro-optic modulator system for the production of dynamic images from giga-pixel computer generated holograms. In: Proc. SPIE, vol. 3956, pp. 13–22 (2000) Google Scholar
  23. 23.
    van Berkel, C., Parker, D., Franklin, A.: Multiview 3d-lcd. In: Proc. SPIE, vol. 2653, p. 32 (1996) Google Scholar
  24. 24.
    Ware, C., Franck, G.: Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Trans. Graph. 15(2), 121–140 (1996) CrossRefGoogle Scholar
  25. 25.
    Woodgate, G.J., Harrold, J., Jacobs, A.M.S., Moseley, R.R., Ezra, D.: Flat-panel autostereoscopic displays: characterisation and enhancement. In: Proc. SPIE, vol. 3957, p. 153 (2000) Google Scholar
  26. 26.
    Yang, R., Huang, X., Li, S., Jaynes, C.: Toward the light field display: Autostereoscopic rendering via a cluster of projectors. IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marco Agus
    • 1
  • Fabio Bettio
    • 1
  • Andrea Giachetti
    • 1
  • Enrico Gobbetti
    • 1
    Email author
  • José Antonio Iglesias Guitián
    • 1
  • Fabio Marton
    • 1
  • Jonas Nilsson
    • 1
  • Giovanni Pintore
    • 1
  1. 1.CRS4 Visual Computing GroupPulaItaly

Personalised recommendations