Advertisement

Interactive HDR lighting of dynamic participating media

Abstract

In this paper, we present two optimization techniques to light and render volumetric data of inhomogeneous participating media. Both are independent of the lighting model selected. We use an implementation of the ray marching algorithm to approximate the Radiance Transfer Equation. The system can calculate single scattering in time-varying isotropic participating media with the incident field being modeled as a high dynamic range (HDR) environment map. We can use dynamic lighting (with certain restrictions) and free camera movement without using any precomputations while achieving interactive frame rates.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Blasi, P., Saẽc, B.L., Schlick, C.: A rendering algorithm for discrete volume density objects. Comput. Graph. Forum (Eurographics ’93) 12(3), 201–210 (1993)

  2. 2.

    Blinn, J.F.: Light reflection functions for simulation of clouds and dusty surfaces. SIGGRAPH Comput. Graph. 16(3), 21–29 (1982)

  3. 3.

    Cerezo, E., Pérez, F., Pueyo, X., Serón, F.J., Sillion, F.X.: A survey on participating media rendering techniques. Vis. Comput. 21(5), 303–328 (2005)

  4. 4.

    Chandrasekhar, S.: Radiative Transfer. Clarendon, Oxford (1950)

  5. 5.

    Cohen, J., Debevec, P.: The LightGen HDR shop plugin. http://www.hdrshop.com/main-pages/plugins.html (2001)

  6. 6.

    Cuntz, N., Kolb, A.: Fast hierarchical 3d distance transforms on the GPU. In: Eurographics 07 (Short Presentations) (2007)

  7. 7.

    Donnelly, W.: Per-pixel displacement mapping with distance functions. In: GPU Gems 2, Programming Techniques for High-Performance Graphics and General-Purpose Computation, pp. 123–136. Addison–Wesley, Reading (2005). Chap. 8

  8. 8.

    Engel, K., Ertl, T.: Interactive high-quality vollume rendering with flexible consumer graphics hardware. In: Eurographics State of the Art of Report (2002)

  9. 9.

    Entezari, A., Scoggins, R., Möller, T., Machiraju, R.: Shading for Fourier volume rendering. In: VVS’02: Proceedings of the 2002 IEEE Symposium on Volume Visualization and Graphics, pp. 131–138. IEEE Press, New York (2002)

  10. 10.

    Goodnight, N., Wang, R., Woolley, C., Humphreys, G.: Interactive time-dependent tone mapping using programmable graphics hardware. In: EGRW’03: Proceedings of the 14th Eurographics Workshop on Rendering, pp. 26–37. Eurographics Association, Aire-la-Ville (2003)

  11. 11.

    Grzeszczuk, R., Henn, C., Yagel, R.: Advanced geometry techniques for ray casting volumes. In: ACM SIGGRAPH 1998 Course Notes, Course 4 (1998)

  12. 12.

    Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive rendering of large volume data sets. In: IEEE Visualization (2002)

  13. 13.

    Harris, M.J., Lastra, A.: Real-time cloud rendering. In: Chalmers, A., Rhyne, T.M. (eds.) EG 2001 Proceedings, vol. 20(3), pp. 76–84. Blackwell, Oxford (2001)

  14. 14.

    Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. In: SIGGRAPH’05: ACM SIGGRAPH 2005 Papers, pp. 812–815. Assoc. Comput. Mach., New York (2005)

  15. 15.

    Hegeman, K., Ashikhmin, M., Premoze, S.: A lighting model for general participating media. In: SI3D, pp. 117–124 (2005)

  16. 16.

    Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, New York (1978)

  17. 17.

    Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in scenes with participating media using photon maps. In: SIGGRAPH’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 311–320. Assoc. Comput. Mach., New York (1998). DOI: 10.1145/280814.280925, ISBN 0-89791-999-8

  18. 18.

    Kajiya, J.T., Herzen, B.P.V.: Ray tracing volume densities. In: SIGGRAPH’84: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–174. Assoc. Comput. Mach., New York (1984)

  19. 19.

    Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods, vol. 1: basics. Wiley, New York (1986)

  20. 20.

    Kay, T.L., Kajiya, J.T.: Ray tracing complex scenes. In: SIGGRAPH’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 269–278. Assoc. Comput. Mach., New York (1986)

  21. 21.

    Klein, T., Strengert, M., Stegmaier, S., Ertl, T.: Exploiting frame-to-frame coherence for accelerating high-quality volume raycasting on graphics hardware. In: IEEE Visualization, p. 29 (2005)

  22. 22.

    Kollig, T., Keller, A.: Efficient illumination by high dynamic range images. In: EGRW’03: Proceedings of the 14th Eurographics Workshop on Rendering, pp. 45–50 (2003)

  23. 23.

    Kruger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 38. IEEE Comput. Soc., Los Alamitos (2003)

  24. 24.

    Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Proceedings of the Eurographics workshop on Rendering techniques’96, pp. 91–100. Springer, Berlin (1996)

  25. 25.

    LaMar, E., Hamann, B., Joy, K.I.: Multiresolution techniques for interactive texture-based volume visualization. In: VIS’99: Proceedings of the Conference on Visualization’99, pp. 355–361. IEEE Comput. Soc., Los Alamitos (1999)

  26. 26.

    Li, W., Mueller, K., Kaufman, A.: Empty space skipping and occlusion clipping for texture-based volume rendering. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 42. IEEE Comput. Soc., Los Alamitos (2003)

  27. 27.

    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, J. (eds.) Proceedings of Fifth Berkeley Symposium on Math. Stat. and Prob., vol. 1, pp. 281–297. Univ. California Press, Berkeley (1967)

  28. 28.

    Max, N.L.: Atmospheric illumination and shadows. SIGGRAPH Comput. Graph. 20(4), 117–124 (1986)

  29. 29.

    Narasimhan, S.G., Nayar, S.K.: Shedding Light on the Weather. IEEE Comput. Soc., Los Alamitos (2003), p. 665

  30. 30.

    Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)

  31. 31.

    NVidiaCorporation: Cg language specification. http://developer.download.nvidia.com/cg/Cg_1.5/1.5.0/0019/Cg_Specification.pdf

  32. 32.

    NVidiaCorporation: Framebuffer object extension. http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

  33. 33.

    Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23(3), 488–495 (2004)

  34. 34.

    Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: SIGGRAPH’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 497–500. Assoc. Comput. Mach., New York (2001)

  35. 35.

    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 267–276. Assoc. Comput. Mach., New York (2002)

  36. 36.

    Ritsche, N.: Real-time shell space rendering of volumetric geometry. In: GRAPHITE’06: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 265–274. Assoc. Comput. Mach., New York (2006)

  37. 37.

    Rushmeier, H.E., Torrance, K.E.: The zonal method for calculating light intensities in the presence of a participating medium. In: SIGGRAPH’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 293–302. Assoc. Comput. Mach., New York (1987)

  38. 38.

    Shi, L., Yu, Y.: Controllable smoke animation with guiding objects. ACM Trans. Graph. 24(1), 140–164 (2005)

  39. 39.

    Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 527–536. Assoc. Comput. Mach., New York (2002)

  40. 40.

    Stam, J.: Stochastic rendering of density fields. In: Proceedings of Graphics Interface’94, pp. 51–58 (1994)

  41. 41.

    Stam, J.: Multiple scattering as a diffusion process. In: Hanrahan, P.M., Purgathofer, W. (eds.) Rendering Techniques’95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pp. 41–50. Springer, Berlin (1995)

  42. 42.

    Sun, B., Ramamoorthi, R., Narasimhan, S.G., Nayar, S.K.: A practical analytic single scattering model for real time rendering. In: SIGGRAPH’05: ACM SIGGRAPH 2005 Papers, pp. 1040–1049. Assoc. Comput. Mach., New York (2005)

  43. 43.

    Szirmay-Kalos, L., Sbert, M., Umenhoffer, T.: Real-time multiple scattering in participating media with illumination networks. In: Eurographics Symposium on Rendering, pp. 277–282 (2005)

  44. 44.

    Tost, D., Grau, S., Ferre, M., Puig, A.: Ray-casting time-varying volume data sets with frame-to-frame coherence. In: Proceedings of SPIE (2006)

  45. 45.

    Vollrath, J., Weiskopf, D., Ertl, T.: A generic software framework for the gpu volume rendering pipeline. In: VMV’05: Proceedings of Vision, Modeling, and Visualization Conference (2005)

  46. 46.

    Westermann, R., Sevenich, B.: Accelerated volume ray-casting using texture mapping. In: VIS’01: Proceedings of the Conference on Visualization’01, pp. 271–278, IEEE Comput. Soc., Los Alamitos, 2001

  47. 47.

    Zhou, K., Hou, Q., Gong, M., Snyder, J., Guo, B., Shum, H.Y.: Fogshop: Real-time design and rendering of inhomogeneous, single-scattering media. Technical Report, Microsoft Research (2007)

  48. 48.

    Zhou, K., Ren, Z., Lin, S., Bao, H., Guo, B., Shum, H.Y.: Real-time smoke rendering using compensated ray marching. Technical Report, Microsoft Research (2007)

Download references

Author information

Correspondence to Fernando Navarro.

Electronic Supplementary Material

VideoObject

VideoObject

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Navarro, F., Gutierrez, D. & Serón, F.J. Interactive HDR lighting of dynamic participating media. Vis Comput 25, 339–347 (2009). https://doi.org/10.1007/s00371-008-0299-8

Download citation

Keywords

  • High dynamic range
  • Participating media
  • Lighting
  • GPU
  • Real time
  • Volume density objects