The Visual Computer

, Volume 24, Issue 12, pp 1013–1023 | Cite as

Twofold adaptive partition of unity implicits

  • J. P. Gois
  • V. Polizelli-Junior
  • T. Etiene
  • E. Tejada
  • A. Castelo
  • L. G. Nonato
  • T. Ertl
Special Issue Article

Abstract

Partition of Unity Implicits (PUI) has been recently introduced for surface reconstruction from point clouds. In this work, we propose a PUI method that employs a set of well-observed solutions in order to produce geometrically pleasant results without requiring time consuming or mathematically overloaded computations. One feature of our technique is the use of multivariate orthogonal polynomials in the least-squares approximation, which allows the recursive refinement of the local fittings in terms of the degree of the polynomial. However, since the use of high-order approximations based only on the number of available points is not reliable, we introduce the concept of coverage domain. In addition, the method relies on the use of an algebraically defined triangulation to handle two important tasks in PUI: the spatial decomposition and an adaptive polygonization. As the spatial subdivision is based on tetrahedra, the generated mesh may present poorly-shaped triangles that are improved in this work by means a specific vertex displacement technique. Furthermore, we also address sharp features and raw data treatment. A further contribution is based on the PUI locality property that leads to an intuitive scheme for improving or repairing the surface by means of editing local functions.

Keywords

Algebraic triangulation Partition of unity implicits Orthogonal polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003) CrossRefGoogle Scholar
  2. 2.
    Gois, J.P., Polizelli-Junior, V., Etiene, T., Tejada, E., Castelo, A., Ertl, T., Nonato, L.G.: Robust and adaptive surface reconstruction using partition of unity implicits. In: Brazilian Symposium on Computer Graphics and Image Processing, pp. 95–102 (2007) Google Scholar
  3. 3.
    Bloomenthal, J.: An implicit surface polygonizer. In: Graphics Gems IV, pp. 324–349. Academic Press, San Diego (1994). citeseer.ist.psu.edu/bloomenthal94implicit.html Google Scholar
  4. 4.
    Ohtake, Y., Belyaev, A., Seidel, H.P.: Sparse surface reconstruction with adaptive partition of unity and radial basis functions. Graph. Models 68(1), 15–24 (2006) MATHCrossRefGoogle Scholar
  5. 5.
    Mederos, B., Arouca, S., Lage, M., Lopes, H., Velho, L.: Improved partition of unity implicit surface reconstruction. Technical Report TR-0406, IMPA, Brazil (2006) Google Scholar
  6. 6.
    Chen, Y.L., Lai, S.H.: A partition-of-unity based algorithm for implicit surface reconstruction using belief propagation. In: IEEE International Conference on Shape Modeling and Applications, pp. 147–155 (2007) Google Scholar
  7. 7.
    Xia, Q., Wang, M.Y., Wu, X.: Orthogonal least squares in partition of unity surface reconstruction with radial basis function. In: Conference on Geometric Modeling and Imaging, pp. 28–33 (2006) Google Scholar
  8. 8.
    Tobor, I., Reuter, P., Schlick, C.: Reconstructing multi-scale variational partition of unity implicit surfaces with attributes. Graph. Models 68(1), 25–41 (2006) MATHCrossRefGoogle Scholar
  9. 9.
    Kazhdan, M.: Reconstruction of solid models from oriented point sets. In: Eurographics Symposium on Geometry Processing, pp. 73–82 (2005) Google Scholar
  10. 10.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Eurographics Symposium on Geometry Processing, pp. 61–70 (2006) Google Scholar
  11. 11.
    Bolitho, M., Kazhdan, M., Burns, R., Hoppe, H.: Multilevel streaming for out-of-core surface reconstruction. In: Eurographics Symposium on Geometry Processing, pp. 69–78 (2007) Google Scholar
  12. 12.
    Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4), 341–355 (1988) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hall, M., Warren, J.: Adaptive polygonalization of implicitly defined surfaces. IEEE Comput. Graph. Appl. 10(6), 33–42 (1990) CrossRefGoogle Scholar
  14. 14.
    Paiva, A., Lopes, H., Lewiner, T., de Figueiredo, L.H.: Robust adaptive meshes for implicit surfaces. In: Brazilian Symposium on Computer Graphics and Image Processing, pp. 205–212 (2006) Google Scholar
  15. 15.
    Kazhdan, M., Klein, A., Dalal, K., Hoppe, H.: Unconstrained isosurface extraction on arbitrary octrees. In: Eurographics Symposium on Geometry Processing, pp. 125–133 (2007) Google Scholar
  16. 16.
    Castelo, A., Nonato, L.G., Siqueira, M., Minghim, R., Tavares, G.: The j1a triangulation: An adaptive triangulation in any dimension. Comput. Graph. 30(5), 737–753 (2006) CrossRefGoogle Scholar
  17. 17.
    de Figueiredo, L.H., Gomes, J.M., Terzopoulos, D., Velho, L.: Physically-based methods for polygonization of implicit surfaces. In: Conference on Graphics Interface, pp. 250–257 (1992) Google Scholar
  18. 18.
    Schreiner, J., Scheidegger, C., Silva, C.: High-quality extraction of isosurfaces from regular and irregular grids. IEEE Trans. Vis. Comput. Graph. 12(5), 1205–1212 (2006) CrossRefGoogle Scholar
  19. 19.
    Bartels, R.H., Jezioranski, J.J.: Least-squares fitting using orthogonal multinomials. ACM Trans. Math. Softw. 11(3), 201–217 (1985) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Amenta, N., Kil, Y.J.: The domain of a point set surfaces. Eurographics Symp. Point-based Graph. 1(1), 139–147 (2004) Google Scholar
  21. 21.
    Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature sensitive surface extraction from volume data. In: SIGGRAPH’01, pp. 57–66 (2001) Google Scholar
  22. 22.
    PovRay: Persistence of vision. http://www.porvay.org (2007)

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. P. Gois
    • 1
  • V. Polizelli-Junior
    • 1
  • T. Etiene
    • 1
  • E. Tejada
    • 2
  • A. Castelo
    • 1
  • L. G. Nonato
    • 1
  • T. Ertl
    • 2
  1. 1.Universidade de São PauloSão CarlosBrazil
  2. 2.Universität StuttgartStuttgartGermany

Personalised recommendations