The Visual Computer

, Volume 24, Issue 10, pp 911–922 | Cite as

Haptic two-finger contact with textiles

  • Guido Böttcher
  • Dennis Allerkamp
  • Daniel Glöckner
  • Franz-Erich Wolter
Original Article

Abstract

Real-time cloth simulation involves many computational challenges to be solved, particularly in the context of haptic applications, where high frame rates are necessary for obtaining a satisfying experience. In this paper, we present an interactive cloth simulation system that offers a compromise between a realistic physics-based simulation of fabrics and a haptic application meeting high requirements in terms of computation speed. Our system allows the user to interact with the fabric using two fingers. The required performance of the system is achieved by introducing an intermediate layer responsible for the simulation of the small part of the surface being in contact with the fingers. Additionally we separate the possible contact situations into different cases, each being individually handled by a specialised contact algorithm.

Keywords

Virtual reality Haptics Deformable objects Tactile rendering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allerkamp, D., Böttcher, G., Wolter, F.-E., Brady, A.C., Qu, J., Summers, I.R.: A vibrotactile approach to tactile rendering. Vis. Comput. 23(2), 97–108 (2007). DOI  10.1007/s00371-006-0031-5 CrossRefGoogle Scholar
  2. 2.
    Balaniuk, R.: Using fast local modeling to buffer haptic data. In: PUG99: Proceedings of the Fourth PHANTOM Users Group Workshop (1999) Google Scholar
  3. 3.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM Press, New York (1998). DOI  10.1145/280814.280821 CrossRefGoogle Scholar
  4. 4.
    Barbagli, F., Salisbury, K., Prattichizzo, D.: Dynamic local models for stable multi-contact haptic interaction with deformable objects. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 11th Symposium on, pp. 109–116 (2003). DOI  10.1109/HAPTIC.2003.1191248
  5. 5.
    Bergamasco, M., Salsedo, F., Fontana, M., Tarri, F., Avizzano, C.A., Frisoli, A., Ruffaldi, E., Marcheschi, S.: High performance haptic device for force rendering in textile exploration. Vis. Comput. 23(4), 247–256 (2007). DOI  10.1007/s00371-007-0103-1 CrossRefGoogle Scholar
  6. 6.
    Botsch, M., Steinberg, S., Bischoff, S., Kobbelt, L.: OpenMesh—a generic and efficient polygon mesh data structure. In: Proceedings of OpenSG Symposium 2002 (2002) Google Scholar
  7. 7.
    Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86(3), 490–503 (1998). DOI  10.1109/5.662874 CrossRefGoogle Scholar
  8. 8.
    Cavusoglu, M.C., Tendick, F.: Multirate simulation for high fidelity haptic interaction with deformable. In: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 3, pp. 2458–2464 (2000). DOI  10.1109/ROBOT.2000.846397
  9. 9.
    Duriez, C., Andriot, C., Kheddar, A.: Signorini’s contact model for deformable objects in haptic simulations. In: Intelligent Robots and Systems, 2004 (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, vol. 4, pp. 3232–3237 (2004). DOI  10.1109/IROS.2004.1389915
  10. 10.
    Etzmuß, O., Keckeisen, M., Straßer, W.: A fast finite element solution for cloth modelling. In: PG ’03: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, pp. 244–251. IEEE Computer Society, Washington (2003) CrossRefGoogle Scholar
  11. 11.
    Fontana, M., Marcheschi, S., Tarri, F., Salsedo, F., Bergamasco, M., Allerkamp, D., Böttcher, G., Wolter, F.-E., Brady, A.C., Qu, J., Summers, I.R.: Integrating force and tactile rendering into a single VR system. In: Cyberworlds, 2007. CW ’07. International Conference on, pp. 277–284 (2007). DOI  10.1109/CW.2007.40
  12. 12.
    Hutchinson, D., Preston, M., Hewitt, T.: Adaptive refinement for mass/spring simulations. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation ’96, pp. 31–45. Springer, New York (1996) Google Scholar
  13. 13.
    Magnenat-Thalmann, N., Volino, P., Bonanni, U., Summers, I.R., Bergamasco, M., Salsedo, F.: Wolter. F.-E.: From physics-based simulation to the touching of textiles: The HAPTEX project. Int. J. Virtual Real. 6(3), 35–44 (2007) Google Scholar
  14. 14.
    Mahvash, M., Hayward, V.: High-fidelity haptic synthesis of contact with deformable bodies. Comput. Graph. Appl. IEEE 24(2), 48–55 (2004). DOI  10.1109/MCG.2004.1274061 CrossRefGoogle Scholar
  15. 15.
    Mark, W.R., Randolph, S.C., Finch, M., Van Verth, J.M., Taylor, R.M.: Adding force feedback to graphics systems: issues and solutions. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 447–452. ACM Press, New York (1996). DOI  10.1145/237170.237284 CrossRefGoogle Scholar
  16. 16.
    Mazzella, F., Montgomery, K., Latombe, J.C.: The forcegrid: a buffer structure for haptic interaction with virtual elastic objects. In: Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol. 1, pp. 939–946 (2002). DOI  10.1109/ROBOT.2002.1013477
  17. 17.
    Pawluk, D.T.V., Howe, R.D.: Dynamic lumped element response of the human fingerpad. J. Biomech. Eng. 121(2), 178–183 (1999). DOI  10.1115/1.2835100 CrossRefGoogle Scholar
  18. 18.
    Peinecke, N., Allerkamp, D., Wolter, F.-E.: Generating tactile textures using periodicity analysis. In: Cyberworlds, 2007. CW ’07. International Conference on, pp. 308–313 (2007). DOI  10.1109/CW.2007.38
  19. 19.
    Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environments. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 345–352. ACM Press/Addison-Wesley, New York (1997). DOI  10.1145/258734.258878 CrossRefGoogle Scholar
  20. 20.
    Ruspini, D.C., Kolarov, K., Khatib, O.: Haptic interaction in virtual environments. In: Intelligent Robots and Systems, 1997. IROS ’97. Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 1, pp. 128–133 (1997). DOI  10.1109/IROS.1997.649024
  21. 21.
    Summers, I.R.: Final demonstrator and final integration report. Tech. rep., HAPTEX—HAPtic sensing of virtual TEXtiles (2008). http://haptex.miralab.unige.ch
  22. 22.
    Volino, P., Davy, P., Bonanni, U., Luible, C., Magnenat-Thalmann, N., Mäkinen, M., Meinander, H.: From measured physical parameters to the haptic feeling of fabric. Vis. Comput. 23(2), 133–142 (2007). DOI  10.1007/s00371-006-0034-2 CrossRefGoogle Scholar
  23. 23.
    Volino, P., Davy, P., Bonanni, U., Magnenat-Thalmann, N., Böttcher, G., Allerkamp, D., Wolter, F.-E.: From measured physical parameters to the haptic feeling of fabric. In: Proceedings of the HAPTEX’05 Workshop on Haptic and Perception of Deformable Objects, Hanover, pp. 17–29 (2005) Google Scholar
  24. 24.
    Volino, P., Magnenat-Thalmann, N.: Accurate anisotropic bending stiffness on particle grids. In: Cyberworlds, 2007. CW ’07. International Conference on, pp. 300–307. IEEE Computer Society, Washington (2007). DOI  10.1109/CW.2007.11 CrossRefGoogle Scholar
  25. 25.
    Zhuang, Y., Canny, J.: Haptic interaction with global deformations. In: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 3, pp. 2428–2433 (2000). DOI  10.1109/ROBOT.2000.846391
  26. 26.
    Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’. Proceedings. 1995 IEEE/RSJ International Conference on, vol. 3, pp. 146–151. IEEE Computer Society, Los Alamitos (1995). DOI  10.1109/IROS.1995.525876 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Guido Böttcher
    • 1
  • Dennis Allerkamp
    • 1
  • Daniel Glöckner
    • 1
  • Franz-Erich Wolter
    • 1
  1. 1.Welfenlab—Computer Graphics Division, Institute of Man–Machine CommunicationLeibniz Universität HannoverHannoverGermany

Personalised recommendations