Advertisement

The Visual Computer

, Volume 25, Issue 1, pp 53–68 | Cite as

A distance measure for repeated takes of one scene

  • Werner Bailer
  • Felix Lee
  • Georg Thallinger
Original Article

Abstract

In applications, such as post-production and archiving of audiovisual material, users are confronted with large amounts of redundant unedited raw material, called rushes. Viewing and organizing this material are crucial but time consuming tasks. Typically, multiple but slightly different takes of the same scene can be found in the rushes video. We propose a method for detecting and clustering takes of one scene shot from the same or very similar camera positions. An important subproblem is to determine the similarity of video segments. We propose a distance measure based on the Longest Common Subsequence (LCSS) model. Two variants of the proposed approach, one with a threshold parameter and one with automatically determined threshold, are compared against the Dynamic Time Warping (DTW) distance measure on six videos from the TRECVID 2007 BBC rushes summarization data set. We also evaluate the influence of the applied temporal segmentation method at the input on the results. Applications of the proposed method to automatic skimming and interactive browsing of rushes video are described.

Keywords

Sequence matching Video LCSS Distance measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adjeroh, D.A., Lee, M.C., King, I.: A distance measure for video sequences. Comput. Vis. Image Underst. 75(1–2), 25–45 (1999) CrossRefGoogle Scholar
  2. 2.
    Bailer, W., Lee, F., Thallinger, G.: Skimming rushes video using retake detection. In: Proceedings of the TRECVID Workshop on Video Summarization (TVS’07), pp. 60–64. Assoc. Comput. Mach., New York (2007) CrossRefGoogle Scholar
  3. 3.
    Bailer, W., Lee, F., Thallinger, G.: Detecting and clustering multiple takes of one scene. In: Proceedings of the 14th International Multimedia Modeling Conference, pp. 80–89. Kyoto, Japan (2008) Google Scholar
  4. 4.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  5. 5.
    Chang, S.F., Chen, W., Meng, H.J., Sundaram, H., Zhong, D.: VideoQ: an automated content based video search system using visual cues. In: MULTIMEDIA ’97: Proceedings of the fifth ACM international conference on Multimedia. pp. 313–324. Assoc. Comput. Mach., New York (1997) CrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001) MATHGoogle Scholar
  7. 7.
    Covell, M., Baluja, S., Fink, M.: Advertisement detection and replacement using acoustic and visual repetition. In: IEEE Workshop on Multimedia Signal Processing, pp. 461–466 (2006) Google Scholar
  8. 8.
    Delaney, B., Hoomans, B.: Preservation and digitisation plans: overview and analysis, PrestoSpace Deliverable 2.1 user requirements final report. http://www.prestospace.org/project/deliverables/D2-1_User_Requirements_Final_Report.pdf (2004)
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, New York (2000) Google Scholar
  10. 10.
    Duygulu, P., Pan, J.Y., Forsyth, D.A.: Towards auto-documentary: tracking the evolution of news stories. In: MULTIMEDIA ’04: Proceedings of the 12th annual ACM international conference on Multimedia, pp. 820–827. Assoc. Comput. Mach., New York (2004) CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Hampapur, A., Bolle, R.M.: Comparison of distance measures for video copy detection. In: IEEE International Conference on Multimedia and Expo, pp. 737–740 (2001) Google Scholar
  13. 13.
    Hampapur, A., Hyun, K., Bolle, R.M.: Comparison of sequence matching techniques for video copy detection. In: Yeung, M.M., Li, C.S., Lienhart, R.W. (eds.) Storage and Retrieval for Media Databases 2002. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 4676, pp. 194–201 (2001) Google Scholar
  14. 14.
    Hsu, W., Chang, S.F.: Topic tracking across broadcast news videos with visual duplicates and semantic concepts. In: International Conference on Image Processing (ICIP) (2006) Google Scholar
  15. 15.
    Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: First SIAM International Conference on Data Mining (SDM’2001) (2001) Google Scholar
  16. 16.
    Kleban, J., Sarkar, A., Moxley, E., Mangiat, S., Joshi, S., Kuo, T., Manjunath, B.S.: Feature fusion and redundancy pruning for rush video summarization. In: TVS ’07: Proceedings of the international workshop on TRECVID video summarization, pp. 84–88. Assoc. Comput. Mach., New York (2007) CrossRefGoogle Scholar
  17. 17.
  18. 18.
    MPEG-7: Information Technology—Multimedia Content Description Interface: Part 3: Visual. ISO/IEC 15938-3 (2001) Google Scholar
  19. 19.
    MPEG-7: Information Technology—Multimedia Content Description Interface: Part 8: Extraction and Use of MPEG-7 Descriptions. ISO/IEC 15938-8 (2001) Google Scholar
  20. 20.
    Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algorithms for connected word recognition. Bell Syst. Techn. J. 60(7), 1389–1409 (1981) Google Scholar
  21. 21.
    Open source computer vision library. http://sourceforge.net/projects/opencvlibrary
  22. 22.
    Over, P., Smeaton, A.F., Kelly, P.: The TRECVID 2007 BBC rushes summarization evaluation pilot. In: Proceedings of the TRECVID Workshop on Video Summarization (TVS’07), pp. 1–15. Assoc. Comput. Mach., New York (2007) CrossRefGoogle Scholar
  23. 23.
    Salvador, S., Chan, P.: FastDTW: Toward accurate dynamic time warping in linear time and space. In: Proceedings of 3rd Workshop on Mining Temporal and Sequential Data at ACM KDD’04 (2004) Google Scholar
  24. 24.
    Smeaton, A.F., Over, P.: TRECVID 2006: Shot boundary detection task overview. In: Proceedings of the TRECVID Workshop (2006) Google Scholar
  25. 25.
    SoX—Sound eXchange. http://sox.sourceforge.net
  26. 26.
    Tan, Y.P., Kulkarni, S.R., Ramadge, P.J.: A framework for measuring video similarity and its application to video query by example. In: Proceedings of International Conference on Image Processing, vol. 2, pp. 106–110. Kobe (1999) Google Scholar
  27. 27.
    Viola, P., Jones, M.: Fast and robust classification using asymmetric adaboost and a detector cascade. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14. MIT Press, Cambridge (2002) Google Scholar
  28. 28.
    Vlachos, M., Kollios, G., Gunopoulos, D.: Discovering similar multidimensional trajectories. In: ICDE ’02: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684. IEEE Comput. Soc., San Jose (2002) CrossRefGoogle Scholar
  29. 29.
    Vlachos, M., Kollios, G., Gunopulos, D.: Elastic translation invariant matching of trajectories. Mach. Learn. 58(2–3), 301–334 (2005) MATHCrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: ICPR ’06: Proceedings of the 18th International Conference on Pattern Recognition, pp. 1135–1138. IEEE Comput. Soc., Washington (2006). http://dx.doi.org/10.1109/ICPR.2006.392 Google Scholar
  31. 31.
    Zhao, L., Qi, W., Li, S.Z., Yang, S.Q., Zhang, H.J.: Key-frame extraction and shot retrieval using nearest feature line (NFL). In: MULTIMEDIA ’00: Proceedings of the 2000 ACM Workshops on Multimedia, pp. 217–220. Assoc. Comput. Mach., New York (2000) CrossRefGoogle Scholar
  32. 32.
    Zhu, X., Elmagarmid, A.K., Xue, X., Wu, L., Catlin, A.C.: InsightVideo: toward hierarchical video content organization for efficient browsing, summarization and retrieval. IEEE Trans. Multimedia 7(4), 648–666 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Information Systems & Information ManagementJOANNEUM RESEARCH Forschungsgesellschaft mbHGrazAustria

Personalised recommendations