Advertisement

The Visual Computer

, Volume 24, Issue 11, pp 963–972 | Cite as

Estimation of mechanical parameters of deformable solids from videos

  • Cédric SyllebranqueEmail author
  • Samuel Boivin
Original Article

Abstract

In this paper, we present a new method to estimate the mechanical parameters of soft bodies directly from videos of solids getting deformed under external user action. Our method requires one standard camera, a deformable solid made of homogeneous material, and a regular light source. We make estimations using an inverse method based on a quasi-static FEM simulation and a visual error metric. The result is a set of two parameters, the Young modulus and the Poisson ratio, that can be used for more complex simulations, or force feedback applications like virtual surgery, for example. We also present a new device for capturing the external forces applied on the deformable solids.

Keywords

Identification Inverse mechanic Video comparison metrics Force capture device Soft tissue simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belytschko, T., Parimi, C.: Structured extended finite element methods for solids defined by implicit surfaces. Numer. Meth. Eng. 56, 609–635 (2003) zbMATHCrossRefGoogle Scholar
  2. 2.
    Benech, N., Negreira, C.A.: Longitudinal and lateral low frequency head wave analysis in soft media. J. Acoust. Soc. Am. 117(6), 3424–3431 (2005) CrossRefGoogle Scholar
  3. 3.
    Duriez, C., Dubois, F., Andriot, C., Kheddar, A.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans. Vis. Comput. Graph. 12(1), 36–47 (2006) CrossRefGoogle Scholar
  4. 4.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Analysis Mach. Intell. 13, 891–906 (1991) CrossRefGoogle Scholar
  5. 5.
    Hall, T.J., Bilgen, M., Insana, M.F., Krouskop, T.A.: Phantom materials for elastography. Ultrason. Ferroelectr. Freq. Control, IEEE Trans. 44(6), 1355–1365 (1997) CrossRefGoogle Scholar
  6. 6.
    Kirkpatrick, G., Vecchi, O.: Optimization by simulated annealing. Science 220, 671–680 (1983) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lang, J., Pai, D.K., Woodham, R.J.: Acquisition of elastic models for interactive simulation. Int. J. Robotic Res. 21(8), 713–734 (2002) CrossRefGoogle Scholar
  8. 8.
    Miller, K., Chinzei, K.: Constitutive modeling of brain tissue: experiment and theory. J. Biomech. 30, 1115–1121 (1997) CrossRefGoogle Scholar
  9. 9.
    Ostrander, L.E., Lee, B.Y.: Testing viscoelastic properties of biological soft tissue. Eng. Medicine Biol. Soc. 14, 107–109 (1992) Google Scholar
  10. 10.
    Pai, D., Lang, J., Lloyd, J., Woodham, R.: ACME, a telerobotic active measurement facility. Exp. Robotics VI 250, 391–400 (2000) CrossRefGoogle Scholar
  11. 11.
    Samani, A., Bishop, J., Plewes, D.B.: A constrained modulus reconstruction technique for breast cancer assessment. IEEE Trans. Med. Imaging 20, 877–885 (2001) CrossRefGoogle Scholar
  12. 12.
    Samani, A., Plewes, D.: An inverse problem solution for measuring the elastic modulus of intact ex vivo breast tissue tumours. Phys. Medicine Biol. 52(5), 1247–1260 (2007) CrossRefGoogle Scholar
  13. 13.
    Soza, G., Grosso, R., Nimsky, C., Hastreiter, P., Fahlbusch, R., Greiner, G.: Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int. J. Med. Robotics Comput. Assist. Surg. 1(3), 87–95 (2005) CrossRefGoogle Scholar
  14. 14.
    Zhang, M., Zheng, Y.P., Mak, A.F.T.: Estimating the effective Young’s modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation. Med. Eng. Phys. 19(6), 512–517 (1997) CrossRefGoogle Scholar
  15. 15.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH 98, pp. 43–54. ACM Press (1998) Google Scholar
  16. 16.
    Becker, M., Teschner, M.: Robust and efficient estimation of elasticity parameters using the linear finite element method. In: Proceedings of Simulation and Visualization, pp. 15–28. Magdeburg, Germany (2007) Google Scholar
  17. 17.
    Bhat, K., Twigg, C., Hodgins, J., Khosla, P., Popovic, Z., Seitz, S.: Estimating cloth simulation parameters from video. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2003), pp. 37–51. ACM Press (2003) Google Scholar
  18. 18.
    Boivin, S., Gagalowicz, A.: Image-based rendering of diffuse, specular and glossy surfaces from a single image. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 107–116. ACM Press (2001) Google Scholar
  19. 19.
    Bruyns, C., Ottensmeyer, M.P.: Measurements of soft-tissue mechanical properties to support development of a physically based virtual animal model. In: MICCAI ’02: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part I, pp. 282–289. Springer, London (2002) CrossRefGoogle Scholar
  20. 20.
    Chen, E.J., Novakofski, J., Jenkins, W.K., O’Brien, Jr. W.D.: Young’s modulus measurements of soft tissues with application to elasticity imaging. Ultrason. Ferroelectr. Freq. Control, IEEE Trans. 43(1), 191–194 (1996) CrossRefGoogle Scholar
  21. 21.
    Delalleau, A., Josse, G., Lagarde, J.M., Zahouani, H., Bergheau, J.M.: Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. J. Biomech. 39, 1603–1610 (2006) CrossRefGoogle Scholar
  22. 22.
    Kauer, M., Vuskovic, V., Dual, J., Szekely, G., Bajka, M.: Inverse finite element characterization of soft tissues. In: MICCAI ’01: Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 128–136. Springer, London (2001) Google Scholar
  23. 23.
    Liu, H., Shi, P.: Meshfree particle method. In: ICCV ’03: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 289–296. IEEE Computer Society, Washington (2003) Google Scholar
  24. 24.
    Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: Proceedings of ACM SIGGRAPH, pp. 215–224 (1999) Google Scholar
  25. 25.
    Revell, J.: Computer vision elastography. PhD Thesis, Computer Science, University of Bristol (2005) Google Scholar
  26. 26.
  27. 27.
    Ascension Technology Corporation. Flock of birds. http://www.ascension-tech.com/products/flockofbirds.php
  28. 28.
    Hewlett Packard. MP-3130 Video Projector. http://h10032.www1.hp.com/ctg/Manual/c00063469.pdf
  29. 29.
    Instron. Universal Materials Testing Machines. http://www.instron.us/wa/products/universal_material
  30. 30.
  31. 31.
    SensAble Technologies. Phantom series. http://www.sensable.com/products-haptic-devices.htm
  32. 32.
    Smooth-On. Ecoflex Liquid Rubber. http://www.smooth-on.com/liqrubr.htm
  33. 33.
  34. 34.
    Vicon. Motion capture systems. http://www.vicon.com/
  35. 35.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.INRIA, ALCOVE projectLilleFrance

Personalised recommendations