Advertisement

The Visual Computer

, Volume 25, Issue 3, pp 279–288 | Cite as

Implicit modeling from polygon soup using convolution

  • Xiaogang JinEmail author
  • Chiew-Lan Tai
  • Hailin Zhang
Original Article

Abstract

We present a novel method for creating implicit surfaces from polygonal models. The implicit function is defined by convolving a kernel with the triangles in the polygonal model. By adopting a piecewise quartic polynomial kernel function with a finite support, we derive a convolution model that has a closed-form solution, and thus can be efficiently evaluated. The user only needs to specify an effective radius of influence to generate an implicit surface of desired closeness to the polygonal model. The resulting implicit surface is fast to evaluate, not requiring accumulating evaluation results using any hierarchical data structure, and can be efficiently ray-traced to reveal the detailed features.

Keywords

Convolution surfaces Implicit surfaces Ray tracing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blinn, J.F.: A Generalization of algebraic surface drawing. ACM Trans. Graph. 1(3), 235–256 (1982)CrossRefGoogle Scholar
  2. 2.
    Bloomenthal, J., Shoemake, K.: Convolution Surfaces. In: Proceedings of SIGGRAPH ’91, pp. 251–256. ACM, New York (1991)CrossRefGoogle Scholar
  3. 3.
    Bloomenthal, J., Bajaj, C., Blinn, J., Cani, M., Rockwood, A., Wyvilland, B.G.: An Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, Los Altos, CA (1997)Google Scholar
  4. 4.
    Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4), 341–355 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bloomenthal, J.: Bulge elimination in convolution surfaces. Comput. Graph. Forum 16(1), 31–41 (1997)CrossRefGoogle Scholar
  6. 6.
    Cani, M.P., Desbrun, M.: Animation of deformable models using implicit surfaces. IEEE Trans. Vis. Comput. Graph. 3(1), 39–50 (1997)CrossRefGoogle Scholar
  7. 7.
    Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH ’01, pp. 67–76. ACM, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of SIGGRAPH ’00, pp. 19–28. ACM, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Hornus, S., Angelidis, A., Cani, M.P.: Implicit modeling using subdivision curves. Visual Comput. 19(2–3), 94–104 (2003)zbMATHGoogle Scholar
  10. 10.
    Jin, X., Tai, C.L.: Convolution surfaces for arcs and quadratic curves with a varying kernel. Visual Comput. 18(8), 530–546 (2002)CrossRefGoogle Scholar
  11. 11.
    Kalra, D., Barr, A.H.: Guaranteed ray intersections with implicit surfaces. In: Proceedings of SIGGRAPH ’89, pp. 297–306. ACM, New York, NY (1989)CrossRefGoogle Scholar
  12. 12.
    Kanai, T., Ohtake, Y., Kase, K.: Hierarchical error-driven approximation of implicit surfaces from polygonal meshes. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 21-30. Eurographics Association, Aire-la-Ville (2006)Google Scholar
  13. 13.
    McCormack, J., Sherstyuk, A.: Creating and rendering convolution surfaces. Comput. Graph. Forum 17(2), 113–120 (1998)CrossRefGoogle Scholar
  14. 14.
    Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set surface editing operators. ACM Trans. Graph. 21(3), 330–338 (2002)CrossRefGoogle Scholar
  15. 15.
    Nishimura, H., Hirai, M., Kawai, T.: Object modeling by distribution function and a method of image generation. Image Generation Trans. IECE 68(4), 718–725 (1985)Google Scholar
  16. 16.
    Nishita, T., Nakamae, E.: A method for displaying metaballs by using Bézier clipping. Comput. Graph. Forum 13(3), 271–280 (1994)CrossRefGoogle Scholar
  17. 17.
    Oeltze, S., Preim, B.: Visualization of vasculature with convolution surfaces: method, validation and evaluation. IEEE Trans. Med. Imaging 24(4), 540–548 (2005)CrossRefGoogle Scholar
  18. 18.
    Ohtake, Y., Belyaev, A., Seidel, H.P.: A multiscale approach to 3D scattered data interpolation with compactly supported basis functions. In: Proceedings of Shape Modeling International, pp. 292–300. IEEE Computer Society, Washington, DC (2003)Google Scholar
  19. 19.
    Sederberg, T.W., Zundel, A.K.: Scan line display of algebraic surfaces. In: Proceedings of SIGGRAPH ’89, pp. 145–156. ACM, New York, NY (1989)Google Scholar
  20. 20.
    Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23(3), 896–904 (2004)CrossRefGoogle Scholar
  21. 21.
    Sherstyuk, A.: Kernel functions in convolution surfaces: a comparative analysis. Visual Comput. 15(4), 171–182 (1999)zbMATHCrossRefGoogle Scholar
  22. 22.
    Turk, G., O’Brien, J.F.: Modeling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)CrossRefGoogle Scholar
  23. 23.
    Wyvill, B., Wyvill, G.: Field functions for implicit surfaces. Visual Comput. 5(1–2), 75–82 (1989)zbMATHCrossRefGoogle Scholar
  24. 24.
    Wyvill, G., McPheeters, C., Wyvill, B.: Data structure for oft objects. Visual Comput. 2(4), 227–234 (1986)CrossRefGoogle Scholar
  25. 25.
    Yngve, G., Turk, G.: Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Vis. Comput. Graph. 21(4), 346–355 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Lab of CAD & CGZhejiang UniversityHangzhouP.R. China
  2. 2.Hong Kong University of Science & TechnologyHong KongP.R. China

Personalised recommendations