Advertisement

The Visual Computer

, Volume 24, Issue 7–9, pp 787–796 | Cite as

Spectral mesh deformation

  • Guodong RongEmail author
  • Yan Cao
  • Xiaohu Guo
Original Article

Abstract

In this paper, we present a novel spectral method for mesh deformation based on manifold harmonics transform. The eigenfunctions of the Laplace–Beltrami operator give orthogonal bases for parameterizing the space of functions defined on the surfaces. The geometry and motion of the original irregular meshes can be compactly encoded using the low-frequency spectrum of the manifold harmonics. Using the spectral method, the size of the linear deformation system can be significantly reduced to achieve interactive computational speed for manipulating large triangle meshes. Our experimental results demonstrate that only a small spectrum is needed to achieve undistinguishable deformations for large triangle meshes. The spectral mesh deformation approach shows great performance improvement on computational speed over its spatial counterparts.

Keywords

Spectral geometry Manifold harmonics Mesh deformation Interactive manipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Movie 1 17.5MB

References

  1. 1.
    Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual laplacian editing for meshes. IEEE Trans. Vis. Comput. Graph. 12(3), 386–395 (2006)CrossRefGoogle Scholar
  2. 2.
    Boier-Martin, I., Ronfard, R., Bernardini, F.: Detail-preserving variational surface design with multiresolution constraints. In: Proceedings of the 2004 Shape Modeling International, pp. 119–128. IEEE Computer Society, Washington, DC (2004)CrossRefGoogle Scholar
  3. 3.
    Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23(3), 630–634 (2004)CrossRefGoogle Scholar
  4. 4.
    Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: PriMo: coupled prisms for intuitive surface modeling. In: Proceedings of the 4th Eurographics Symposium on Geometry processing, pp. 11–20. Eurographics Association, Aire-la-Ville, Switzerland (2006)Google Scholar
  5. 5.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)CrossRefGoogle Scholar
  6. 6.
    Botsch, M., Sumner, R., Pauly, M., Gross, M.: Deformation transfer for detail-preserving surface editing. In: Proceedings of 11th International Fall Workshop Vision, Modeling & Visualization, pp. 357–364. Akademische Verlagsgesellschaft Aka, Aachen (2006)Google Scholar
  7. 7.
    Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.: Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. Vis. Comput. Graph. 12(3), 375–385 (2006)CrossRefGoogle Scholar
  8. 8.
    Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proceedings of ACM SIGGRAPH 99, pp. 325–334. ACM Press/Addison-Wesley Publishing Co., New York, NY (1999)CrossRefGoogle Scholar
  9. 9.
    Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3), 1126–1134 (2006)CrossRefGoogle Scholar
  10. 10.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of ACM SIGGRAPH 2000, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York, NY (2000)Google Scholar
  11. 11.
    Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of ACM SIGGRAPH 98, pp. 105–114. ACM Press/Addison-Wesley Publishing Co., New York, NY (1998)CrossRefGoogle Scholar
  12. 12.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)CrossRefGoogle Scholar
  13. 13.
    Marinov, M., Botsch, M., Kobbelt, L.: GPU-based multiresolution deformation using approximate normal field reconstruction. J. Graph. Tools 12(1), 27–46 (2007)Google Scholar
  14. 14.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes – The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York, NY (2007)zbMATHGoogle Scholar
  16. 16.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as shape-DNA of surfaces and solids. Comput.-Aided Des. 38(4), 342–366 (2006)CrossRefGoogle Scholar
  17. 17.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184. ACM Press, New York, NY (2004)CrossRefGoogle Scholar
  18. 18.
    Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)CrossRefGoogle Scholar
  19. 19.
    Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of ACM SIGGRAPH 95, pp. 351–358. ACM Press/Addison-Wesley Publishing Co., New York, NY (1995)CrossRefGoogle Scholar
  20. 20.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. (Proceedings of ACM SIGGRAPH 90) 21(4), 205–214 (1987)CrossRefGoogle Scholar
  21. 21.
    Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Technical report, ALICE – INRIA Lorraine, Nancy, France (2007)Google Scholar
  22. 22.
    Welch, W., Witkin, A.: Variational surface modeling. Comput. Graph. (Proceedings of ACM SIGGRAPH 92) 26(2), 157–166 (1992)CrossRefGoogle Scholar
  23. 23.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)CrossRefGoogle Scholar
  24. 24.
    Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. Comput. Graph. Forum 24(3), 601–609 (2005)CrossRefGoogle Scholar
  25. 25.
    Zhang, H., van Kaick, O., Dyer, R.: Spectral methods for mesh processing and analysis. In: Proceedings of Eurographics State-of-the-art Report, pp. 1–22. Eurographics Association, Prague (2007)Google Scholar
  26. 26.
    Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)CrossRefGoogle Scholar
  27. 27.
    Zhou, K., Huang, X., Xu, W., Guo, B., Shum, H.Y.: Direct manipulation of subdivision surfaces on GPUs. ACM Trans. Graph. 26(3), 91 (2007)CrossRefGoogle Scholar
  28. 28.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Proceedings of ACM SIGGRAPH 97, pp. 259–268. ACM Press/Addison-Wesley Publishing Co., New York, NY (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dept. of Computer ScienceUniversity of Texas at DallasDallasUSA
  2. 2.Dept. of Mathematical SciencesUniversity of Texas at DallasDallasUSA

Personalised recommendations