Advertisement

The Visual Computer

, Volume 24, Issue 7–9, pp 775–785 | Cite as

Mesh massage

A versatile mesh optimization framework
  • Tim Winkler
  • Kai HormannEmail author
  • Craig Gotsman
Original Article

Abstract

We present a general framework for post-processing and optimizing surface meshes with respect to various target criteria. On the one hand, the framework allows us to control the shapes of the mesh triangles by applying simple averaging operations; on the other hand we can control the Hausdorff distance to some reference geometry by minimizing a quadratic energy. Due to the simplicity of this setup, the framework is efficient and easy to implement, yet it also constitutes an effective and versatile tool with a variety of possible applications. In particular, we use it to reduce the texture distortion in animated mesh sequences, to improve the results of cross-parameterizations, and to minimize the distance between meshes and their remeshes.

Keywords

Mesh optimization Laplacian smoothing Hausdorff distance Parameterization Remeshing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Movie 1 2.9MB

Movie 2 4.5MB

Movie 3 2.5MB

Movie 4 4.5MB

Movie 5 1.9MB

Movie 6 4.4MB

Movie 7 1.3MB

Movie 8 4.1MB

References

  1. 1.
    Alliez, P., Attene, M., Gotsman, C., Ucelli, G.: Recent advances in remeshing of surfaces. In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring, pp. 53–82. Springer, Berlin Heidelberg New York (2008)CrossRefGoogle Scholar
  2. 2.
    Anuar, N., Guskov, I.: Extracting animated meshes with adaptive motion estimation. In: Proceedings of Vision, Modeling, and Visualization 2004, pp. 63–71. IOS Press, Stanford, CA (2004)Google Scholar
  3. 3.
    Charpiat, G., Maurel, P., Pons, J.P., Keriven, R., Faugeras, O.: Generalized gradients: Priors on minimization flows. Int. J. Comput. Vision 73(3), 325–344 (2007)CrossRefGoogle Scholar
  4. 4.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)CrossRefGoogle Scholar
  5. 5.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH ’99, pp. 317–324. ACM Press, Los Angeles, CA (1999)CrossRefGoogle Scholar
  6. 6.
    Dyn, N., Hormann, K., Kim, S.J., Levin, D.: Optimizing 3D triangulations using discrete curvature analysis. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 135–146. Vanderbilt University Press, Nashville (2001)Google Scholar
  7. 7.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of SIGGRAPH ’95, pp. 173–182. ACM Press, Los Angeles, CA (1995)CrossRefGoogle Scholar
  8. 8.
    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)CrossRefGoogle Scholar
  9. 9.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin Heidelberg New York (2005)CrossRefGoogle Scholar
  11. 11.
    Garland, M.: Multiresolution modeling: Survey & future opportunities. In: Proceedings of Eurographics, STAR – State of The Art Reports, pp. 111–131. Eurographics Association, Milano (1999)Google Scholar
  12. 12.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of SIGGRAPH ’93, pp. 19–26. ACM Press, Anaheim, CA (1993)CrossRefGoogle Scholar
  13. 13.
    Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)CrossRefGoogle Scholar
  14. 14.
    Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23(3), 861–869 (2004)CrossRefGoogle Scholar
  15. 15.
    Lawson, C.L.: Contributions to the theory of linear least maximum approximation. Ph.D. thesis, University of California, Los Angeles (1961)Google Scholar
  16. 16.
    Liu, L., Tai, C.L., Ji, Z., Wang, G.: Non-iterative approach for global mesh optimization. Comput. Aided Des. 39(9), 772–782 (2007)CrossRefGoogle Scholar
  17. 17.
    Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates for irregular polygons. J. Graph. Tools 7(1), 13–22 (2002)zbMATHGoogle Scholar
  18. 18.
    Motzkin, T.S., Walsh, J.L.: Polynomials of best approximation on a real finite point set. Trans. Am. Math. Soc. 91(2), 231–245 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proceedings of GRAPHITE 2006, pp. 381–389. ACM Press, Kuala Lumpur (2006)CrossRefGoogle Scholar
  20. 20.
    Ohtake, Y., Belyaev, A.: Mesh optimization for polygonized isosurfaces. Comput. Graph. Forum 20(3), 368–376 (2001)CrossRefGoogle Scholar
  21. 21.
    Owen, S.J., White, D.R., Tautges, T.J.: Facet-based surfaces for 3D mesh generation. In: Proceedings of the 11th International Meshing Roundtable, pp. 297–312. Ithaca, NY (2002)Google Scholar
  22. 22.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 67(3), 277–296 (2006)CrossRefGoogle Scholar
  24. 24.
    Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)CrossRefGoogle Scholar
  25. 25.
    Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)CrossRefGoogle Scholar
  26. 26.
    Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: Proceedings of the 12th International Meshing Roundtable, pp. 215–224. Santa Fe, NM (2003)Google Scholar
  27. 27.
    Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Proceedings of SGP 2003, pp. 20–30. Eurographics Association, Aachen (2003)Google Scholar
  28. 28.
    Taubin, G.: A signal approach to fair surface design. In: Proceedings of SIGGRAPH ’95, pp. 351–358. ACM Press, Los Angeles, CA (1995)CrossRefGoogle Scholar
  29. 29.
    Toledo, S.: TAUCS: A library of sparse linear solvers, version 2.2. http://www.tau.ac.il/∼stoledo/taucs/ (2003). Accessed 2008Google Scholar
  30. 30.
    Van Damme, R., Alboul, L.: Tight triangulations. In: Daehlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 517–526. Vanderbilt University Press, Nashville (1995)Google Scholar
  31. 31.
    Wachspress, E.L.: A Rational Finite Element Basis. Academic, New York (1975)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Clausthal University of TechnologyClausthalGermany
  2. 2.TechnionHaifaIsrael

Personalised recommendations