Advertisement

The Visual Computer

, Volume 24, Issue 7–9, pp 699–708 | Cite as

Vortex methods for incompressible flow simulations on the GPU

  • Diego Rossinelli
  • Petros Koumoutsakos
Original Article

Abstract

We present a remeshed vortex particle method for incompressible flow simulations on GPUs. The particles are convected in a Lagrangian frame and are periodically reinitialized on a regular grid. The grid is used in addition to solve for the velocity–vorticity Poisson equation and for the computation of the diffusion operators. In the present GPU implementation of particle methods, the remeshing and the solution of the Poisson equation rely on fast and efficient mesh-particle interpolations. We demonstrate that particle remeshing introduces minimal artificial dissipation, enables a faster computation of differential operators on particles over grid-free techniques and can be efficiently implemented on GPUs. The results demonstrate that, contrary to common practice in particle simulations, it is necessary to remesh the (vortex) particle locations in order to solve accurately the equations they discretize, without compromising the speed of the method. The present method leads to simulations of incompressible vortical flows on GPUs with unprecedented accuracy and efficiency.

Keywords

Vortex methods Particles Fluids Graphics processors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amada, T., Imura, M., Yasumuro, Y., Manabe, Y., Chihara, K.: Particle-based fluid simulation on GPU. In: ACM Workshop on General-Purpose Computing on Graphics Processors and SIGGRAPH 2004. Los Angeles, CA (2004)Google Scholar
  2. 2.
    Bergdorf, M., Koumoutsakos, P.: A Lagrangian particle-wavelet method. Multiscale Model. Simul. 5(3), 980–995 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial: Second Edition. SIAM, Philadelphia, PA (2000)MATHGoogle Scholar
  4. 4.
    Chaniotis, A.K., Poulikakos, D., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J. Comput. Phys. 182(1), 67–90 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Cottet, G.H., Koumoutsakos, P.: Vortex Methods, Theory and Practice. Cambridge University Press (2000)Google Scholar
  6. 6.
    Cottet, G.H., Maitre, E.: A level set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16(3), 415–438 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Foster, N., Metaxas, D.: Controlling fluid animation. In: Proceedings CGI ’97, pp. 178–188 (1997)Google Scholar
  8. 8.
    Georgii, J., Westermann, R.: Mass-spring systems on the GPU. Simul. Model. Pract. Theory 13(8), 693–702 (2005)CrossRefGoogle Scholar
  9. 9.
    Hagen, T.R., Lie, K.A., Natvig, J.R.: Solving the Euler equations on graphics processing units. Comput. Sci. (ICCS 2006) 3994, 220–227 (2006)CrossRefGoogle Scholar
  10. 10.
    Harada, T., Koshizuka, S., Kawaguchi, Y.: Smoothed particle hydrodynamics on GPUs. In: Proc. of Computer Graphics International, pp. 63–70 (2007)Google Scholar
  11. 11.
    Harris, M.J.: Fast fluid dynamics simulation on the GPU. In: GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics, pp. 637–665. Addison-Wesley (2004)Google Scholar
  12. 12.
    Kolb, A., Cuntz, N.: Dynamic particle coupling for GPU-based fluid simulation. In: Proc. ASIM, pp. 722–727 (2005)Google Scholar
  13. 13.
    Kolb, A., Latta, L., Rezk-Salama, C.: Hardware-based simulation and collision detection for large particle systems. In: Proc. Graphics Hardware, pp. 123–131. ACM/Eurographics, Grenoble, France (2004)Google Scholar
  14. 14.
    Koumoutsakos, P.: Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138(2), 821–857 (1997)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Koumoutsakos, P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457–487 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Krüger, J., Schiwietz, T., Kipfer, P., Westermann, R.: Numerical simulations on PC graphics hardware. In: ParSim 2004 (Special Session of EuroPVM/MPI 2004) (2004)Google Scholar
  17. 17.
    Hegeman, K., Carr, N.A., Miller, G.S.: Particle-based fluid simulation on the GPU. In: Computational Science – ICCS 2006, vol. 3994, pp. 228–235. Springer, Berlin/Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Minion, M.L., Brown, D.L.: Performance of under-resolved two-dimensional incompressible flow simulations, ii. J. Comput. Phys. 138, 734–765 (1997)MATHCrossRefGoogle Scholar
  19. 19.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159. Eurographics Association, San Diego, CA (2003)Google Scholar
  21. 21.
    Pfister, H., Gross, M.: Point-based computer graphics. IEEE Comput. Graph. Appl. 24(4), 22–23 (2004)CrossRefGoogle Scholar
  22. 22.
    Scheidegger, C.E., Comba, J.L.D., da Cunha, R.D.: Practical CFD simulations on programmable graphics hardware using smac. Comput. Graph. Forum 24(4), 715–728 (2005)CrossRefGoogle Scholar
  23. 23.
    Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24(3), 910–914 (2005). http://doi.acm.org/10.1145/1073204.1073282CrossRefGoogle Scholar
  24. 24.
    Stam, J.: A simple fluid solver based on the FFT. J. Graph. Tools 6(2), 43–52 (2001)MATHGoogle Scholar
  25. 25.
    Treuille, A., Lewis, A., Popovic, Z.: Model reduction for real-time fluids. ACM Trans. Graph. 25(3), 826–834 (2006)CrossRefGoogle Scholar
  26. 26.
    Wu, E.H., Zhu, H.B., Liu, X.H., Liu, Y.Q.: Simulation and interaction of fluid dynamics. Visual Comput. 23(5), 299–308 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Chair of Computational ScienceETH ZurichZurichSwitzerland

Personalised recommendations