We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

GPU-based point radiation for interactive volume sculpting and segmentation

Abstract

Internal structures, features, and properties in volumetric datasets are mostly obscured and hidden. In order to reveal and explore them, appropriate tools are required to remove and carve the occluding materials and isolate and extract different regions of interest. We introduce a framework of interactive tools for real-time volume sculpting and segmentation. We utilize a GPU-based point radiation technique as a fundamental building block to create a collection of high-quality volume manipulation tools for direct drilling, lasering, peeling, and cutting/pasting. In addition, we enable interactive parallel region growing segmentation that allows multiple seed planting by direct sketching on different volumetric regions with segmentation results dynamically modified during the process. We use the same point radiation technique to create high-quality real-time feedback of the segmented regions during the seed growing process. We present results obtained from raw and segmented medical volume datasets.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Avila, R.S., Sobierajski, L.M.: A haptic interaction method for volume visualization. In: Proceedings of IEEE Visualization, pp. 197–204. IEEE Computer Society Press, San Francisco, CA (1996)

  2. 2.

    Bloomenthal, J.: Introduction to Implicit Surfaces. Morgan Kaufmann Publishers Inc., San Francisco, CA (1997)

  3. 3.

    Chen, H.L.J., Samavati, F.F., Sousa, M.C., Mitchell, J.R.: Sketch-based volumetric seeded region growing. In: Proceedings of Eurographics Workshop on Sketch-Based Interfaces and Modeling 2006, pp. 123–129. Eurographics, Vienna (2006)

  4. 4.

    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 51–72 (1986)

  5. 5.

    Correa, C.D., Silver, D., Chen, M.: Feature aligned volume manipulation for illustration and visualization. IEEE Trans. Vis. Comput. Graph. 12, 1069–1076 (2006)

  6. 6.

    Ferley, E., Cani, M.P., Gascuel, J.D.: Practical volumetric sculpting. Visual Comput. 16, 469–480 (2000)

  7. 7.

    Galyean, T.A., Hughes, J.F.: Sculpting: an interactive volumetric modeling technique. In: Proceedings of SIGGRAPH ’91, pp. 267–274. ACM, New York, NY (1991)

  8. 8.

    Huff, R., Dietrich, C.A., Nedel, L.P., Freitas, C.M.D.S., Comba, J.L.D., Olabarriaga, S.D.: Erasing, digging and clipping in volumetric datasets with one or two hands. In: Proceedings of the ACM International Conference on Virtual Reality Continuum and its Applications, pp. 271–278. ACM, Hong Kong (2006)

  9. 9.

    Justice, R.K., Stokely, E.M.: 3-D segmentation of MR brain images using seeded region growing. In: 18th Annual International Conference of the IEEE Proceedings 1996, pp. 1083–1084. IEEE Computer Society, Amsterdam (1996)

  10. 10.

    McGuffin, M., Tancau, L., Balakrishnan, R.: Using deformations for browsing volumetric data. In: Proceedings of IEEE Visualization, pp. 401–408. IEEE Computer Society, Seattle, WA (2003)

  11. 11.

    Owada, S., Nielsen, F., Igarashi, T.: Volume catcher. In: Proceedings of the Symposium on Interactive 3D Graphics and Games ’05, pp. 111–116. ACM, Washington, District of Columbia (2005)

  12. 12.

    Pham, D.L., Xu, C., Prince, J.L.: A survey of current methods in medical image segmentation. Tech. Rep. JHU/ECE 99-01 (1999)

  13. 13.

    Rosenfeld, A., Kak, A.: Digital picture processing, vol. 2, pp. 138–145. Academic, New York (1982)

  14. 14.

    Schenke, S., Wuensche, B.C., Denzler, J.: GPU-based volume segmentation. In: Proceedings of Image and Vision Computing New Zealand ’05, pp. 171–176. University of Auckland, Dunedin (2005)

  15. 15.

    Sherbondy, A., Houston, M., Napel, S.: Fast volume segmentation with simultaneous visualization using programmable graphics hardware. In: Proceedings of IEEE Visualization, pp. 171–176. IEEE Computer Society, Seattle, WA (2003)

  16. 16.

    Technical Brief: Microsoft DirectX 10: The Next-Generation Graphics API. NVIDIA Corporation (2006)

  17. 17.

    Tzeng, F.-Y., Lum, E.B., Ma, K.-L.: A novel interface for higher-dimensional classification of volume data. In: Proceedings of IEEE Visualization ’03, pp. 505–512. IEEE Computer Society, Seattle, WA (2003)

  18. 18.

    Wang, S.W., Kaufman, A.E.: Volume sculpting. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics, pp. 151–156. ACM, Monterey, CA (1995)

  19. 19.

    Watt, A.: 3D Computer Graphics. Addison-Wesley, Harlow, Essex (1989)

  20. 20.

    Weiskopf, D., Engel, K., Ertl, T.: Interactive clipping techniques for texture-based volume visualization and volume shading. IEEE Trans. Vis. Comput. Graph. 9(3), 298–312 (2003)

  21. 21.

    Westover, L.: Footprint evaluation for volume rendering. In: Proceedings of SIGGRAPH ’90, pp. 367–376. ACM, Dallas, TX (1990)

  22. 22.

    Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL Programming Guide, third edn. Addison-Wesley, Harlow, Essex (1999)

  23. 23.

    Wyvill, B., Guy, A., Galin, E.: Extending the CSG tree – warping, blending and boolean operations in an implicit surface modeling system. Comput. Graph. Forum 18, 149–158 (1999)

Download references

Author information

Correspondence to Hung-Li Jason Chen.

Electronic Supplementary Material

Movie 1 48MB

Movie 2 56MB

Movie 1 48MB

Movie 2 56MB

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, H., Samavati, F. & Sousa, M. GPU-based point radiation for interactive volume sculpting and segmentation. Visual Comput 24, 689–698 (2008). https://doi.org/10.1007/s00371-008-0249-5

Download citation

Keywords

  • Point-based techniques
  • Real-time system
  • Volume segmentation
  • Volume cutting