The Visual Computer

, Volume 24, Issue 7–9, pp 635–647 | Cite as

Visibility volumes for interactive path optimization

  • Manohar B. Srikanth
  • P.C. Mathias
  • Vijay NatarajanEmail author
  • Prakash Naidu
  • Timothy Poston
Original Article


We describe a real-time system that supports design of optimal flight paths over terrains. These paths either maximize view coverage or minimize vehicle exposure to ground. A volume-rendered display of multi-viewpoint visibility and a haptic interface assists the user in selecting, assessing, and refining the computed flight path. We design a three-dimensional scalar field representing the visibility of a point above the terrain, describe an efficient algorithm to compute the visibility field, and develop visual and haptic schemes to interact with the visibility field. Given the origin and destination, the desired flight path is computed using an efficient simulation of an articulated rope under the influence of the visibility gradient. The simulation framework also accepts user input, via the haptic interface, thereby allowing manual refinement of the flight path.


Visibility analysis Flight paths Force-directed ropes Haptics Multimodal interaction  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avila, R.S., Sobierajski, L.M.: A haptic interaction method for volume visualization. In: Proceedings of IEEE Visualization, pp. 197–204. IEEE Press, Washington, DC (1996)Google Scholar
  2. 2.
    Ben-Moshe, B., Carmi, P., Katz, M.J.: Approximating the visible region of a point on a terrain. In: Arge, L., Italiano, G.F., Sedgewick, R. (eds.) Proceedings of 6th Workshop on Algorithm Engineering and Experiments and the 1st Workshop on Analytic Algorithmics and Combinatorics (ALENEX-04), pp. 120–128. Springer, Berlin Heidelberg New York (2004)Google Scholar
  3. 3.
    Bittner, J., Wonka, P.: Visibility in computer graphics. J. Environ. Plann B Plann Des. 5(30), 729–756 (2003)CrossRefGoogle Scholar
  4. 4.
    Bryson, S.: Virtual reality in scientific visualization. Commun. ACM 39(5), 62–71 (1996)CrossRefGoogle Scholar
  5. 5.
    Cohen-Or, D., Chrysanthou, Y., Silva, C., Durand, F.: A survey of visibility for walkthrough applications. IEEE Trans. Visual. Comput. Graph. 9(3), 412–431 (2003)CrossRefGoogle Scholar
  6. 6.
    Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. J. Symb. Comput. 7(1), 11–30 (1989)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cruz-Neira, C., Leigh, J., Barnes, C., Choen, S., Das, S., Englemann, R., Hudson, R., Papka, M., Siegel, L., Vasilakis, C., Sandin, D.J., Defenti, T.A.: Scientists in wonderland: a report on visualization applications in the CAVE virtual reality environment. In: Proceedings of IEEE Symposium Research Frontiers in Virtual Reality, pp. 59–67. IEEE Press, Washington, DC (1993)CrossRefGoogle Scholar
  8. 8.
    van Dam, A., Forsberg, A.S., Laidlaw, D.H., LaViola, J.J.L., Simpson, R.M.: Immersive VR for scientific visualization: a progress report. IEEE Comput. Graph. Appl. 20(6), 26–52 (2000)CrossRefGoogle Scholar
  9. 9.
    Donald, B.R., Henle, F.: Using haptic vector fields for animation motion control. In: International Conference Robotics and Automation, pp. 3435–3442. IEEE Press, Washington, DC (2000)Google Scholar
  10. 10.
    Durlach, N.I., Mavor, A.S. (eds.): Virtual Reality: Scientific and Technological Challenges. National Academy Press, Washington, DC (1995)Google Scholar
  11. 11.
    Floriani, L.D., Magillo, P.: Algorithms for visibility computation on digital terrain models. In: Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing. ACM, New York (1996)Google Scholar
  12. 12.
    Floriani, L.D., Magillo, P.: Intervisibility on terrains. In: Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographic Information Systems: Principles, Techniques, Managament and Applications, pp. 543–556. Wiley, New York (1999)Google Scholar
  13. 13.
    Franklin, W.R., Ray, C.K.: Higher isn’t necessarily better: visibility algorithms and experiments. In: Proceedings of the 6th International Symposium on Spatial Data Handling, vol. 2, pp. 751–763. Taylor and Francis, London (1994)Google Scholar
  14. 14.
    Lawrence, D.A., Pao, L.Y., Lee, C.D., Novoselov, R.Y.: Synergistic visual/haptic rendering modes for scientific visualization. IEEE Comput. Graph. Appl. 24(6), 22–30 (2004)CrossRefGoogle Scholar
  15. 15.
    Marzouqi, M.S., Jarvis, R.A.: New visibility-based path-planning approach for covert robotic navigation. In: Robotica, vol. 24, pp. 759–773. Springer, Berlin Heidelberg New York (2006)Google Scholar
  16. 16.
    Mills, K., Fox, G., Heimbach, R.: Implementing an intervisibility analysis model on a parallel computing system. Comput. Geosci. 18(8), 1047–1054 (1992)CrossRefGoogle Scholar
  17. 17.
    Nagy, G.: Terrain visibility. Comput. Graph. 18(6), 763–773 (1994)CrossRefMathSciNetGoogle Scholar
  18. 18.
    van Reimersdahl, T., Bley, F., Kuhlen, T., Bischof, C.H.: Haptic rendering techniques for the interactive exploration of CFD datasets in virtual environments. In: EGVE ’03: Proceedings of Workshop on Virtual Environments, pp. 241–246. Eurographics Association, Aire-la-Ville, Switzerland (2003)CrossRefGoogle Scholar
  19. 19.
    Srikanth, M.B., Mathias, P., Naidu, P., Poston, T., Ramachandra, R.: Real-time articulated rope simulation. J. Virtual Reality (2007). Under reviewGoogle Scholar
  20. 20.
    Srinivasan, M.A., Basdogan, C.: Haptics in virtual environments: taxonomy, research status, and challenges. Comput. Graph. 21(4), 393–404 (1997)CrossRefGoogle Scholar
  21. 21.
    Stewart, A.J.: Fast horizon computation at all points of a terrain with visibility and shading applications. IEEE Trans. Visual. Comput. Graph. 4(1), 82–93 (1998)CrossRefGoogle Scholar
  22. 22.
    Teng, Y.A., Davis, L.S.: Visibility analysis on digital terrain models and its parallel implementation. Technical Report CAR-TR-625, Centre for Automation Research, University of Maryland, College Park (1992)Google Scholar
  23. 23.
    Teng, Y.A., DeMenthon, D., Davis, L.S.: Stealth terrain navigation. IEEE Trans. Syst. Man Cybern. 23(1), 96–110 (1993)CrossRefGoogle Scholar
  24. 24.
    Teng, Y.A., Mount, D.M., Puppo, E., Davis, L.S.: Parallelizing and algorithm for visibility on polyhedral terrain. Int. J. Comput. Geometry Appl. 7(1/2), 75–84 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Vasudevan, H., Srikanth, M.B., Manivannan, M.: Rendering stiffer walls: a hybrid haptic system using continuous and discrete time feedback. Adv. Robot. 21(11), 1323–1338 (2007)CrossRefGoogle Scholar
  26. 26.
    Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)CrossRefGoogle Scholar
  27. 27.
    Yano, H., Yoshie, M., Iwata, H.: Development of a non-grounded haptic interface using the gyro effect. In: HAPTICS, pp. 32–39. IEEE Press, Washington, DC (2003)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Manohar B. Srikanth
    • 2
  • P.C. Mathias
    • 3
  • Vijay Natarajan
    • 1
    Email author
  • Prakash Naidu
    • 4
  • Timothy Poston
    • 5
  1. 1.Department of Computer Science and Automation, Supercomputer Education and Research CentreIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.NMR Research Centre, Supercomputer Education and Research CentreIndian Institute of ScienceBangaloreIndia
  4. 4.University of TorontoTorontoCanada
  5. 5.National Institute for Advanced StudiesBangaloreIndia

Personalised recommendations