Advertisement

The Visual Computer

, 24:587 | Cite as

Motion synthesis with decoupled parameterization

  • Dongwook Ha
  • JungHyun Han
Original Article

Abstract

In real-time animation systems, motion interpolation techniques are widely used for their controllability and efficiency. The techniques sample the parameter space using example motions, and interpolate them to compute the blend weights corresponding to the given parameters. A main problem of the techniques is that, as the dimension n of the parameter space increases, the number of required example motions increases exponentially, i.e. O(c n ). To resolve the problem, this paper proposes to use two decoupled parameter spaces for controlling the upper body and the lower body separately. At each frame time, a parameterized motion space produces a source frame, and the target frame is synthesized by splicing the upper body of one source frame with the lower body of the other. In order to have the two source frames correlated with each other, a time-warping scheme has been developed. Furthermore, in order to handle the dynamic properties of the parameter samples of the upper body, we have developed an approximation technique for quickly determining the sample positions in its parameter space. This decoupled parameterization method alleviates the complexity problem, e.g. from O(c 6) to O(c 3), while providing the users with the capability of convenient control over the character.

Keywords

Character animation Motion capture Motion blending Parametric motion synthesis 

References

  1. 1.
    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 483–490. ACM Press, New York, NY (2002)CrossRefGoogle Scholar
  2. 2.
    Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Trans. Graph. 22(3), 402–408 (2003)CrossRefGoogle Scholar
  3. 3.
    Bruderlin, A., Williams, L.: Motion signal processing. Comput. Graph. 29(Annu. Conf. Ser.), 97–104 (1995)Google Scholar
  4. 4.
    Choi, M.G., Lee, J., Shin, S.Y.: Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Trans. Graph. 22(2), 182–203 (2003)CrossRefGoogle Scholar
  5. 5.
    Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together motion: assembling run-time animations. ACM Trans. Graph. 22(3), 702–702 (2003)CrossRefGoogle Scholar
  6. 6.
    Heck, R., Kovar, L., Gleicher, M.: Splicing upper-body actions with locomotion. Comput. Graph. Forum 25(3), 459–466 (2006)CrossRefGoogle Scholar
  7. 7.
    Horn, B.: Closed form solutions of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629–642 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ikemoto, L., Forsyth, D.A.: Enriching a motion collection by transplanting limbs. In: SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108. Eurographics Association, Aire-la-Ville, Switzerland (2004)CrossRefGoogle Scholar
  9. 9.
    Jang, W.S., Lee, W.K., Lee, I.K., Lee, J.: Enriching a motion database by analogous combination of partial human motions. Visual Comput. 24(4), 271–280 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kim, T., Park, S.I., Shin, S.Y.: Rhythmic-motion synthesis based on motion-beat analysis. ACM Trans. Graph. 22(3), 392–401 (2003)CrossRefGoogle Scholar
  11. 11.
    Kovar, L., Gleicher, M.: Flexible automatic motion blending with registration curves. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 214–224. Eurographics Association, Aire-la-Ville, Switzerland (2003)Google Scholar
  12. 12.
    Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 559–568. ACM Press, New York, NY (2004)CrossRefGoogle Scholar
  13. 13.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 473–482. ACM Press, New York, NY (2002)CrossRefGoogle Scholar
  14. 14.
    Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 491–500. ACM Press, New York, NY (2002)CrossRefGoogle Scholar
  15. 15.
    Lee, J., Lee, K.H.: Precomputing avatar behavior from human motion data. Graph. Models 68(2), 158–174 (2006)CrossRefGoogle Scholar
  16. 16.
    Majkowska, A., Zordan, V.B., Faloutsos, P.: Automatic splicing for hand and body animations. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 309–316. Eurographics Association, Aire-la-Ville, Switzerland (2006)Google Scholar
  17. 17.
    Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pp. 1062–1070. ACM Press, New York, NY (2005)CrossRefGoogle Scholar
  18. 18.
    Park, S.I., Shin, H.J., Kim, T.H., Shin, S.Y.: On-line motion blending for real-time locomotion generation: research articles. Comput. Animat. Virtual Worlds 15(3–4), 125–138 (2004)CrossRefGoogle Scholar
  19. 19.
    Park, S.I., Shin, H.J., Shin, S.Y.: On-line locomotion generation based on motion blending. In: SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 105–111. ACM Press, New York, NY (2002)CrossRefGoogle Scholar
  20. 20.
    Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)CrossRefGoogle Scholar
  21. 21.
    Rose, C.F., Sloan, P.P.J., Cohen, M.F.: Artist-directed inverse-kinematics using radial basis function interpolation. Comput. Graph. Forum 20(3), 239–250 (2001)CrossRefGoogle Scholar
  22. 22.
    Shin, H.J., Oh, H.S.: Fat graphs: constructing an interactive character with continuous controls. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 291–298. Eurographics Association, Aire-la-Ville, Switzerland (2006)Google Scholar
  23. 23.
    Wiley, D.J., Hahn, J.K.: Interpolation synthesis of articulated figure motion. IEEE Comput. Graph. Appl. 17(6), 39–45 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Game Research CenterKorea UniversitySeoulKorea

Personalised recommendations