The Visual Computer

, 24:495 | Cite as

Shape deformation with tunable stiffness

  • Wenwu Yang
  • Jieqing FengEmail author
  • Xiaogang Jin
Original Article


The paper presents a 2D or 3D shape deformation method which incorporates global and local stiffness controls. First, a geometric object is embedded into a regular lattice and then the deformation is conducted on the lattice; thus, the method is independent of the underlying object representation. The lattice cells are organized as overlapping local rigid regions, and the region width could be regarded as a means of the global lattice stiffness control. For each region, there is a local stiffness coefficient to control the lattice deformation locally. During the deformation a nonlinear objective function is optimized to achieve the natural lattice deformation with the prescribed global and local stiffnesses. Then, the lattice deformation is passed to the embedded object through bilinear or trilinear interpolation. In this way we can deform the object in a more physically plausible way with tunable stiffness. Experimental results show that the method is intuitive and flexible.


Shape deformation Stiffness Rigidity 


  1. 1.
    Au, O.K.C., Fu, H., Tai, C.L., Cohen-Or, D.: Handle-aware isolines for scalable shape editing. ACM Trans. Graph. (SIGGRAPH 2007) 26(3), 83 (2007)CrossRefGoogle Scholar
  2. 2.
    Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graph. 12(3), 386–395 (2006)CrossRefGoogle Scholar
  3. 3.
    Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: PriMo: coupled prisms for intuitive surface modeling. In: SGP ’06: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. Eurographics Association, Cagliari, Sardinia, Italy (2006)Google Scholar
  4. 4.
    Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum (Eurographics 2007) 26(3), 339–347 (2007)CrossRefGoogle Scholar
  5. 5.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)CrossRefGoogle Scholar
  6. 6.
    Davis, T.A.: UMFPACK: unsymmetric multifrontal sparse LU factorization package. Visit on 10.12.2007Google Scholar
  7. 7.
    Gibson, S., Mirtich, B.: A survey of deformable modeling in computer graphics. Tech. Rep. No. TR-97-19, Mitsubishi Electric Research Lab., Cambridge (1997)Google Scholar
  8. 8.
    Güdükbay, U., Özgüç, B., Tokad, Y.: A spring force formulation for elastically deformable models. Comput. Graph. 21(3), 335–346 (1997)CrossRefGoogle Scholar
  9. 9.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 629–642 (1987)CrossRefGoogle Scholar
  10. 10.
    Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. (SIGGRAPH 2006) 25(3), 1126–1134 (2006)CrossRefGoogle Scholar
  11. 11.
    Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 1134–1141 (2005)CrossRefGoogle Scholar
  12. 12.
    James, D.L., Barbič, J., Twigg, C.D.: Squashing cubes: automating deformable model construction for graphics. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Sketches, p. 38. ACM Press, Los Angeles, CA (2004)Google Scholar
  13. 13.
    James, D.L., Pai, D.K.: ArtDefo: accurate real time deformable objects. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 65–72. ACM Press, Los Angeles, CA (1999)CrossRefGoogle Scholar
  14. 14.
    Kraevoy, V., Sheffer, A.: Mean-value geometry encoding. Int. J. Shape Model. 12(1), 29–46 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Akeley, K. (ed.) SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–172. ACM Press, New Orleans, LA (2000)CrossRefGoogle Scholar
  16. 16.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 479–487 (2005)CrossRefGoogle Scholar
  17. 17.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 471–478 (2005)CrossRefGoogle Scholar
  18. 18.
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. In: Eurographics: State of the Art Report. Eurographics Association, Dublin, Ireland (2005)Google Scholar
  19. 19.
    Platt, J.C., Barr, A.H.: Constraints methods for flexible models. ACM Comput. Graph. (SIGGRAPH 1988) 22(4), 279–288 (1988)CrossRefGoogle Scholar
  20. 20.
    Popa, T., Julius, D., Sheffer, A.: Material-aware mesh deformations. In: SMI ’06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, p. 22. IEEE Computer Society, Matsushima, Japan (2006)Google Scholar
  21. 21.
    Rivers, A.R., James, D.L.: Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Trans. Graph. (SIGGRAPH 2007) 26(3), 82 (2007)CrossRefGoogle Scholar
  22. 22.
    Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. (SIGGRAPH 2006) 25(3), 533–540 (2006)CrossRefGoogle Scholar
  23. 23.
    Schiwietz, T., Georgii, J., Westermann, R.: Freeform image. In: Proceedings of Pacific Graphics 2007, pp. 27–36. IEEE Computer Society, Maui, Hawaii (2007)Google Scholar
  24. 24.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Comput. Graph. (SIGGRAPH 1986) 20(4), 151–160 (1986)CrossRefGoogle Scholar
  25. 25.
    Shoemake, K., Duff, T.: Matrix animation and polar decomposition. In: Booth, K.S., Fournier, A. (eds.) Proceedings of the Conference on Graphics Interface ’92, pp. 258–264. Morgan Kaufmann Publishers Inc., Vancouver, British Columbia (1992)Google Scholar
  26. 26.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: SGP ’07: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 109–116. Eurographics Association, Barcelona, Spain (2007)Google Scholar
  27. 27.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM Press, Nice, France (2004)Google Scholar
  28. 28.
    Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. ACM Trans. Graph. (SIGGRAPH 2007) 26(3), 80 (2007)CrossRefGoogle Scholar
  29. 29.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM Comput. Graph. (SIGGRAPH 1987) 21(4), 205–214 (1987)CrossRefGoogle Scholar
  30. 30.
    Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2d shape deformation using nonlinear least squares optimization. Visual Comput. 22(9), 653–660 (2006)CrossRefGoogle Scholar
  31. 31.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. (SIGGRAPH 2004) 23(3), 644–651 (2004)CrossRefGoogle Scholar
  32. 32.
    Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 496–503 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouP.R. China

Personalised recommendations