The Visual Computer

, Volume 24, Issue 6, pp 449–462

Spline-based feature curves from point-sampled geometry

  • Joel Daniels II
  • Tilo Ochotta
  • Linh K. Ha
  • Cláudio T. Silva
Original Article

Abstract

Defining sharp features in a 3D model facilitates a better understanding of the surface and aids geometric processing and graphics applications, such as reconstruction, filtering, simplification, reverse engineering, visualization, and non-photo realism. We present a robust method that identifies sharp features in a point-based model by returning a set of smooth spline curves aligned along the edges. Our feature extraction leverages the concepts of robust moving least squares to locally project points to potential features. The algorithm processes these points to construct arc-length parameterized spline curves fit using an iterative refinement method, aligning smooth and continuous curves through the feature points. We demonstrate the benefits of our method with three applications: surface segmentation, surface meshing and point-based compression.

Keywords

Feature extraction Moving least squares Point-based modeling Robust statistics B-splines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexa, M., Adamson, A.: On normals and projection operators for surfaces defined by point sets. In: Proceedings of Symposium on Point-Based Graphics, pp. 149–155. IEEE Press, Washington, DC (2004)Google Scholar
  2. 2.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 9(1), 3–15 (2003)CrossRefGoogle Scholar
  3. 3.
    Amenta, N., Kil, Y.J.: Defining point-set surfaces. ACM Trans. Graph. 23(3), 264–270 (2004)CrossRefGoogle Scholar
  4. 4.
    Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Sharpen-bend: Recovering curved sharp edges in triangle meshes produced by feature-insensitive sampling. IEEE Trans. Vis. Comput. Graph. 11(2), 181–192 (2005)CrossRefGoogle Scholar
  5. 5.
    Daniels, J., Ha, L., Ochotta, T., Silva, C.: Robust smooth feature extraction from point clouds. In: IEEE International Conference on Shape Modeling and Applications, pp. 123–136. IEEE Press, Washington, DC (2007)CrossRefGoogle Scholar
  6. 6.
    Demarsin, K., Vanderstraeten, D., Volodine, T., Roose, D.: Detection of closed sharp feature lines in point clouds for reverse engineering applications. Tech. Rep. TW 458. Department of Computer Science, K.U. Leuven, Belgium (2006)Google Scholar
  7. 7.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of ACM SIGGRAPH, pp. 317–324. ACM, Boston (1999)Google Scholar
  8. 8.
    Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24(3), 544–552 (2005)CrossRefGoogle Scholar
  9. 9.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of ACM SIGGRAPH, pp. 209–216. ACM, Boston (1997)Google Scholar
  10. 10.
    Gumhold, S., Wang, X., McLeod, R.: Feature extraction from point clouds. In: Proceedings of 10th International Meshing Roundtable. Sandia National Laboratories, Albuquerque (2001)Google Scholar
  11. 11.
    Hildebrandt, K., Polthier, K., Wardetzky, M.: Smooth feature lines on surface meshes. In: Proceedings of Symposium on Geometry Processing, pp. 85–90. ACM, Boston (2005)Google Scholar
  12. 12.
    Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: Proceedings of IEEE Visualization, pp. 59–66. IEEE Press, Washington, DC (1999)Google Scholar
  13. 13.
    Hubeli, A., Gross, M.: Multiresolution feature extraction for unstructured meshes. In: Proceedings of IEEE Visualization, pp. 287–294. IEEE Press, Washington, DC (2001)Google Scholar
  14. 14.
    Jenke, P., Wand, M., Bokeloh, M., Schilling, A., Strasser, W.: Bayesian point cloud reconstruction. Comput. Graph. Forum 25(3), 379–388 (2006)CrossRefGoogle Scholar
  15. 15.
    Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)CrossRefGoogle Scholar
  16. 16.
    Lee, I.K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17(2), 161–177 (2000)CrossRefGoogle Scholar
  17. 17.
    Levin, D.: Geometric Modeling for Scientific Visualization, chap. Mesh-independent surface interpolation, pp. 37–49. Springer, Berlin Heidelberg New York (2003)Google Scholar
  18. 18.
    Lipman, Y., Cohen-Or, D., Levin, D.: Data-dependent MLS for faithful surface approximation. In: Proceedings of Symposium on Geometry Processing 2007. ACM, Boston (2007)Google Scholar
  19. 19.
    Ochotta, T., Saupe, D.: Compression of point-based 3D models by shape-adaptive wavelet coding of multi-height fields. In: Proceedings of Symposium on Point-Based Graphics, pp. 103–112. IEEE Press, Washington, DC (2004)Google Scholar
  20. 20.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings of IEEE Visualization, pp. 163–170. IEEE Press, Washington, DC (2002)Google Scholar
  21. 21.
    Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22(3), 281–290 (2003)CrossRefGoogle Scholar
  22. 22.
    Scheidegger, C.E., Fleishman, S., Silva, C.T.: Triangulating point set surfaces with bounded error. In: Proceedings of Symposium on Geometry Processing, pp. 63–72. ACM, Boston (2005)Google Scholar
  23. 23.
    Schreiner, J., Scheidegger, C., Fleishman, S., Silva, C.: Direct (re)meshing for efficient surface processing. Comput. Graph. Forum 25, 527–536 (2006)CrossRefGoogle Scholar
  24. 24.
    Watanabe, K., Belyaev, A.G.: Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum 20(3), 385–392 (2001)CrossRefGoogle Scholar
  25. 25.
    Woo, H., Kang, E., Wang, S., Lee, K.H.: A new segmentation method for point cloud data. Int. J. Mach. Tools Manuf. 42, 167–178 (2002)CrossRefGoogle Scholar
  26. 26.
    Yagou, H., Ohtake, Y., Belyaev, A.: Mesh smoothing via mean and median filtering applied to face normals. In: Proceedings of Geometric Modeling and Processing – Theory and Applications, pp. 124–135. IEEE Press, Washington, DC (2002)CrossRefGoogle Scholar
  27. 27.
    Yang, M., Lee, E.: Segmentation of measured point data using a parameteric quadric surface approximation. Comput. Aided Des. 31(7), 449–457 (1999)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Joel Daniels II
    • 1
  • Tilo Ochotta
    • 1
  • Linh K. Ha
    • 1
  • Cláudio T. Silva
    • 1
  1. 1.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations