Advertisement

The Visual Computer

, Volume 24, Issue 6, pp 435–448 | Cite as

Evolution of T-spline level sets for meshing non-uniformly sampled and incomplete data

  • Huaiping Yang
  • Bert Jüttler
Original Article

Abstract

Given a large set of unorganized point sample data, we propose a new framework for computing a triangular mesh representing an approximating piecewise smooth surface. The data may be non-uniformly distributed, noisy, and may contain holes. This framework is based on the combination of two types of surface representations, triangular meshes and T-spline level sets, which are implicit surfaces defined by refinable spline functions allowing T-junctions. Our method contains three main steps. Firstly, we construct an implicit representation of a smooth (C 2 in our case) surface, by using an evolution process of T-spline level sets, such that the implicit surface captures the topology and outline of the object to be reconstructed. The initial mesh with high quality is obtained through the marching triangulation of the implicit surface. Secondly, we project each data point to the initial mesh, and get a scalar displacement field. Detailed features will be captured by the displaced mesh. Finally, we present an additional evolution process, which combines data-driven velocities and feature-preserving bilateral filters, in order to reproduce sharp features. We also show that various shape constraints, such as distance field constraints, range constraints and volume constraints can be naturally added to our framework, which is helpful to obtain a desired reconstruction result, especially when the given data contains noise and inaccuracies.

Keywords

Mesh reconstruction Point cloud Displacement maps T-spline Level sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.: Point set surfaces. In: Proceedings of IEEE VIS’01, pp. 21–28. IEEE Press, Washington, DC (2001)Google Scholar
  2. 2.
    Allègre, R., Chaine, R., Akkouche, S.: Convection-driven dynamic surface reconstruction. In: Proceedings of SMI’05, pp. 33–42. IEEE Press, Washington, DC (2005)Google Scholar
  3. 3.
    Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. In: SCG’00: Proceedings of the 16th Annual Symposium on Computational Geometry, pp. 213–222. ACM, Boston (2000)Google Scholar
  4. 4.
    Apodaca, A., Gritz, L.: Advanced RenderMan: Creating CGI for motion pictures. Kaufmann, San Francisco (1999)Google Scholar
  5. 5.
    Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Sharpen &Bend: Recovering curved sharp edges in triangle meshes produced by feature-insensitive sampling. IEEE Trans. Vis. Comput. Graph. 11(2), 181–192 (2005)CrossRefGoogle Scholar
  6. 6.
    Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)CrossRefGoogle Scholar
  7. 7.
    Boissonnat, J., Cazals, F.: Smooth surface reconstruction via natural neighbour interpolation of distance functions. Comput. Geom. Theory Appl. 22(1), 185–203 (2002)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Botsch, M., Kobbelt, L.: A robust procedure to eliminate degenerate faces from triangle meshes. In: Proceedings of VMV’01, pp. 283–290. Aka, Berlin (2001)Google Scholar
  9. 9.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH’01, pp. 67–76. ACM, Boston (2001)Google Scholar
  10. 10.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cheng, K.-S.D., Wang, W., Qin, H., Wong, K.-Y.K., Yang, H., Liu, Y.: Fitting subdivision surfaces to unorganized point data using SDM. In: Proceedings of PG’04, pp. 16–24. IEEE Press, Washington, DC (2004)Google Scholar
  12. 12.
    Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of SIGGRAPH’98, pp. 115–122. ACM, Boston (1998)Google Scholar
  13. 13.
    Cook, R.: Shade trees. In: Proceedings of SIGGRAPH’84, pp. 223–231. ACM, Boston (1984)Google Scholar
  14. 14.
    Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: Proceedings of SMI’03, pp. 127–134. IEEE Press, Washington, DC (2003)Google Scholar
  15. 15.
    Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In: Proceedings of SIGGRAPH’96, pp. 325–334. ACM, Boston (1996)Google Scholar
  16. 16.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer, Dordrecht (1996)zbMATHGoogle Scholar
  17. 17.
    Feichtinger, R., Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Dual evolution of planar parametric spline curves and T-spline level sets. Comput. Aided Des. 40(1), 13–24 (2008)CrossRefGoogle Scholar
  18. 18.
    Fleishman, S., Cohen-Or, D., Silva, C.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. (Proc. SIGGRAPH’05) 24(3), 544–552 (2005)CrossRefGoogle Scholar
  19. 19.
    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 950–953 (2003)CrossRefGoogle Scholar
  20. 20.
    Gavriliu, M., Carranza, J., Breen, D., Barr, A.: Fast extraction of adaptive multiresolution meshes with guaranteed properties from volumetric data. In: Proceedings of VIS’01, pp. 295–303. IEEE Press, Washington, DC (2001)Google Scholar
  21. 21.
    Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10, 1467–1475 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Gu, X., He, Y., Qin, H.: Manifold splines. Graph. Models 68(3), 23–254 (2006)CrossRefGoogle Scholar
  23. 23.
    Gumhold, S., Hüttner, T.: Multiresolution rendering with displacement mapping. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp. 55–66. ACM, Boston (1999)CrossRefGoogle Scholar
  24. 24.
    Guskov, I., Vidimce, K., Sweldens, W., Schröder, P.: Normal meshes. In: Proceedings of SIGGRAPH’00, pp. 95–102. ACM, Boston (2000)Google Scholar
  25. 25.
    Hartmann, E.: A marching method for the triangulation of surfaces. Visual Comput. 14(3), 95–108 (1998)CrossRefzbMATHGoogle Scholar
  26. 26.
    Hoppe, H.: Progressive meshes. In: Proceedings of SIGGRAPH’96, pp. 99–108. ACM, Boston (1996)Google Scholar
  27. 27.
    Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proceedings of SIGGRAPH’94, pp. 295–302. ACM, Boston (1994)Google Scholar
  28. 28.
    Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3d models from non-uniformly sampled point clouds without normal information. In: Eurographics Symposium on Geometry Processing (SGP 2006), pp. 41–50. ACM, Boston (2006)Google Scholar
  29. 29.
    Hubeli, A., Gross, M.H.: Multiresolution feature extraction from unstructured meshes. In: Proceedings of of IEEE Visualization’01, pp. 16–25. IEEE Press, Washington, DC (2001)Google Scholar
  30. 30.
    Jeong, W.-K., Kim, C.-H.: Direct reconstruction of a displaced subdivision surface from unorganized points. Graph. Models 64(2), 78–93 (2002)CrossRefzbMATHGoogle Scholar
  31. 31.
    Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 943–949 (2003)CrossRefGoogle Scholar
  32. 32.
    Jüttler, B., Felis, A.: Least squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17, 135–152 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Karkanis, T., Stewart, A.J.: Curvature-dependent triangulation of implicit surfaces. IEEE Comput. Graph. Appl. 21(2), 60–69 (2001)CrossRefGoogle Scholar
  34. 34.
    Kobbelt, L., Bareuther, T., Seidel, H.-P.: Multiresolution shape deformations for meshes with dynamic vertex connectivity. Comput. Graph. Forum (Proc. Eurographics’00) 19(3), 249–260 (2000)CrossRefGoogle Scholar
  35. 35.
    Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proceedings of SIGGRAPH’96, pp. 313–324. ACM, Boston (1996)Google Scholar
  36. 36.
    Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. In: Proceedings of SIGGRAPH’00, pp. 85–94. ACM, Boston (2000)Google Scholar
  37. 37.
    Mederos, B., Amenta, N., Velho, L., de Figueiredo, L.H.: Surface reconstruction for noisy point clouds. In: Symposium on Geometry Processing, pp. 53–62. ACM, Boston (2005)Google Scholar
  38. 38.
    Miropolsky, A., Fischer, A.: Reconstruction with 3D geometric bilateral filter. In: 9th ACM Symposium on Solid Modeling and Applications, pp. 225–231. Genoa, Italy. ACM, Boston (2004)Google Scholar
  39. 39.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level partition of unity implicits. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 463–470 (2003)CrossRefGoogle Scholar
  40. 40.
    Ohtake, Y., Belyaev, A., Seidel, H.-P.: 3d scattered data approximation with adaptive compactly supported radial basis functions. In: Proceedings of SMI’04, pp. 31–39. IEEE Press, Washington, DC (2004)Google Scholar
  41. 41.
    Ohtake, Y., Belyaev, A., Seidel, H.-P.: A composite approach to meshing scattered data. Graph. Models 68(3), 255–267 (2006)CrossRefzbMATHGoogle Scholar
  42. 42.
    Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Springer, Berlin Heidelberg New York (2002)Google Scholar
  43. 43.
    Pauly, M., Keiser, R., Kobbelt, L., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 641–650 (2003)CrossRefGoogle Scholar
  44. 44.
    Qin, H., Mandal, C., Vemuri, B.C.: Dynamic catmull-clark subdivision surfaces. IEEE Trans. Vis. Comput. Graph. 4(3), 215–229 (1998)CrossRefGoogle Scholar
  45. 45.
    Raviv, A., Elber, G.: Three dimensional freeform sculpting via zero sets of scalar trivariate functions. In: Proceedings of 5th ACM Symposium on Solid Modeling and Applications, pp. 246–257. ACM, Boston (1999)CrossRefGoogle Scholar
  46. 46.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 477–484 (2003)CrossRefGoogle Scholar
  47. 47.
    Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., Cohen-Or, D.: Competing fronts for coarse-to-fine surface reconstruction. In: Proceedings of Eurographics’06, pp. 389–398. Blackwell, Oxford (2006)Google Scholar
  48. 48.
    Smith, S.M., Brady, J.M.: SUSAN – a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)CrossRefGoogle Scholar
  49. 49.
    Thompson, W.B., Owen, J.C., de St. Germain, H.J., Stark, S.R., Henderson, T.C.: Feature-based reverse engineering of mechanical parts. IEEE Trans. Robot. Autom. 12(1), 57–66 (1999)CrossRefGoogle Scholar
  50. 50.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of ICCV’98, pp. 839–846. IEEE Press, Washington, DC (1998)Google Scholar
  51. 51.
    Velho, L., Gomes, J., Figueiredo, L.H.: Implicit objects in computer graphics. Springer, Berlin Heidelberg New York (2002)zbMATHGoogle Scholar
  52. 52.
    Wang, C.: Bilateral recovering of sharp edges on feature-insensitive sampled meshes. IEEE Trans. Vis. Comput. Graph. 12(4), 629–639 (2006)CrossRefGoogle Scholar
  53. 53.
    Watanabe, K., Belyaev, A.: Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum (Proc. Eurographics’01) 20(3), 385–392 (2001)CrossRefGoogle Scholar
  54. 54.
    Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: Proceedings of SMI’06, pp. 247–252. IEEE Press, Washington, DC (2006)Google Scholar
  55. 55.
    Yang, H., Jüttler, B.: Meshing non-uniformly sampled and incomplete data based on displaced T-spline level sets. In: Proceedings of SMI’07, pp. 251–260. IEEE Press, Washington, DC (2007)Google Scholar
  56. 56.
    Yoon, S.-H.: A surface displaced from a manifold. In: Proceedings of GMP’06, pp. 677–686. Springer, Berlin Heidelberg New York (2006)Google Scholar
  57. 57.
    Zhao, H.-K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: VLSM ’01: Proceedings of the IEEE Workshop on Variational and Level Set Methods, pp. 194–201. IEEE Press, Washington, DC (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria

Personalised recommendations