The Visual Computer

, Volume 25, Issue 3, pp 227–239 | Cite as

Splitting cubes: a fast and robust technique for virtual cutting

  • Nico Pietroni
  • Fabio Ganovelli
  • Paolo Cignoni
  • Roberto Scopigno
Original Article


This paper presents the splitting cubes, a fast and robust technique for performing interactive virtual cutting on deformable objects.

The technique relies on two ideas. The first one is to embed the deformable object in a regular grid, to apply the deformation function to the grid nodes and to interpolate the deformation inside each cell from its 8 nodes. The second idea is to produce a tessellation for the boundary of the object on the base of the intersections of such boundary with the edges of the grid. Please note that the boundary can be expressed in any way; for example it can be a triangle mesh, an implicit or a parametric surface. The only requirement is that the intersection between the boundary and the grid edges can be computed. This paper shows how the interpolation of the deformation inside the cells can be used to produce discontinuities in the deformation function, and the intersections of the cut surface can be used to visually show the cuts on the object.

The splitting cubes is essentially a tessellation algorithm for growing, deformable surface, and it can be applied to any method for animating deformable objects. In this paper the case of the mesh-free methods (MMs) is considered: in this context, we described a practical GPU friendly method, that we named the extended visibility criterion, to introduce discontinuities of the deformation.


Physically based modeling Three-dimensional graphics and realism Animation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

371_2008_216_MOESM1_ESM.avi (14.5 mb)
Movie 1 15MB
371_2008_216_MOESM2_ESM.avi (14.3 mb)
Movie 2 15MB


  1. 1.
    Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Liu, W.: Smoothing and accelerated computations in the element free galerkin method. J. Comput. Appl. Math. 74(1–2), 111–126 (1996). doi:10.1016/0377-0427(96)00020-9MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Belytschko, T., Lu, Y., Gu, L.: Element-free galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bielser, D., Gross, M.: Interactive simulation of surgical cuts. In: Proceedings of the Pacific Graphics, pp. 116–125. IEEE, Los Alamitos (2000)Google Scholar
  4. 4.
    Bielser, D., Maiwald, V., Gross, M.: Interactive cuts through 3-dimensional soft tissue. Comput. Graph. Forum (Eurographics’99 Proc.) 18(3), C31–C38 (1999)CrossRefGoogle Scholar
  5. 5.
    Bruyns, C., Senger, S.: Interactive cutting of 3D surface meshes. Comput. Graph. 25(4), 635–642 (2001). Scholar
  6. 6.
    Cotin, H.D.S., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: CAS99 Proceedings, pp. 70–81. Milan, Italy (1999)Google Scholar
  7. 7.
    Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Comput. Graph. Forum 19(3), 271–282 (2000). Scholar
  8. 8.
    Ganovelli, F., O’Sullivan, C.: Animating cuts with on-the-fly re-meshing. EuroGraphics Short Presentations, 2001, Roberts, J.C., ed. (2001). Scholar
  9. 9.
    Garland, M.: Quadric-based polygonal surface simplification. Ph.D. thesis. Carnegie Mellon University, Computer Science Department (1999)Google Scholar
  10. 10.
    Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. In: Siggraph 2002, Computer Graphics Proceedings, pp. 339–346. ACM Press/ACM SIGGRAPH/Addison Wesley Longman, San Antonio, TX (2002). Scholar
  11. 11.
    Kobbelt, L., Botsch, M., Schwanecke, U., Seidel, H.: Feature-sensitive surface extraction from volume data. In: Fiume, E. (ed.) SIGGRAPH 2001, Computer Graphics Proceedings, pp. 57–66. ACM Press/ACM SIGGRAPH, Los Angeles, CA (2001)Google Scholar
  12. 12.
    Li, S., Liu, W.: Meshfree particle methods. In: International Conference on Computer Vision, pp. 288–296. Springer, Nice, France (2004)Google Scholar
  13. 13.
    Lim, Y.J., De, S.: On the use of meshfree methods and a geometry based surgical cutting in multimodal medical simulations. In: HAPTICS, pp. 295–301. IEEE Computer Society, Chicago (2004). Scholar
  14. 14.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: ACM Computer Graphics (SIGGRAPH 87 Proceedings), vol. 21, pp. 163–170. Anaheim (1987)Google Scholar
  15. 15.
    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004). Scholar
  16. 16.
    Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation. San Diego, CA (2004)Google Scholar
  17. 17.
    Nienhuy, H.W.: Cutting in deformable objects. Tech. rep., PhD Thesis, Utrecht University (2003)Google Scholar
  18. 18.
    O’Brien, J., Bargteil, A.W., Hodgins, J.: Graphical modeling and animation of ductile fracture. In: Proceedings of SIGGRAPH, pp. 291–294. San Antonio, TX (2002)Google Scholar
  19. 19.
    O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: SIGGRAPH, pp. 137–146. Los Angeles, CA (1999). Scholar
  20. 20.
    Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18, 225–235 (1996)MATHCrossRefGoogle Scholar
  21. 21.
    Pauly, M., Keiser, R., Adams, B., Dutr, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24(3), 957–964 (2005). doi:10.1145/1073204.1073296CrossRefGoogle Scholar
  22. 22.
    Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. 22(3), 641–650 (2003). doi:10.1145/882262.882319CrossRefGoogle Scholar
  23. 23.
    Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable tetrahedralized objects. In: Gleicher, M., Thalmann, D. (eds.) Symposium on Computer Animation, Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2007, San Diego, California, USA, August 2–4, 2007), pp. 73–80. Eurographics Association (2007)Google Scholar
  24. 24.
    Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: IEEE VR 2006. IEEE, Alexandria, Virginia (2006)Google Scholar
  25. 25.
    Steinemann, D., Otaduy, M., Gross, M.: Fast arbitrary splitting of deforming objects. In: Eurographics/SIGGRAPH Symposium on Computer Animation. Vienna, Austria (2006)Google Scholar
  26. 26.
    Tanaka, A., Hirota, K., Kaneko, T.: Virtual cutting with force feedback. In: VRAIS’98: Proceedings of the Virtual Reality Annual International Symposium, p. 71. IEEE Computer Society, Washington, DC, USA (1998)Google Scholar
  27. 27.
    VisualComputingLab: Idolib: Interactive deformable objects library. Publicly available on web: (2005)Google Scholar
  28. 28.
    Wyvill, G., McPheeters, C., Wyvill, B.: Data structures for soft objects. Visual Comput. 2(4), 227–234 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nico Pietroni
    • 1
  • Fabio Ganovelli
    • 2
  • Paolo Cignoni
    • 2
  • Roberto Scopigno
    • 2
  1. 1.Visual Computing LabISTI CNR Pisa and Endocas Center For Computer Assisted Surgery PisaPisaItaly
  2. 2.Visual Computing LabISTI CNR PisaPisaItaly

Personalised recommendations