Advertisement

The Visual Computer

, Volume 25, Issue 2, pp 87–100 | Cite as

A model for real-time on-surface flows

  • Jean-François El Hajjar
  • Vincent Jolivet
  • Djamchid Ghazanfarpour
  • Xavier Pueyo
Original Article

Abstract

Simulating fluid flows for visualization purposes is known to be one of the most challenging fields of the computer graphics domain. While rendering vast liquid areas has been widely addressed this last decade, few papers have tackled the problematic of on-surface flows, even though real-time applications such as drive simulators or video games could greatly benefit from such methods. We present a novel empirical method for the animation of liquid droplets lying on a flat surface, the core of our technique being a simulation operating on a 2D grid which is implementable on GPU. The wetted surface can freely be oriented in space and is not limited to translucent materials, the liquid flow being governed by external forces, the viscosity parameter and the presence of obstacles. Furthermore, we show how to simply incorporate in our simulation scheme two enriching visual effects, namely absorption and ink transport. Rendering can be achieved from an arbitrary view point using a GPU image based raycasting approach and takes into account the refraction and reflection of light. Even though our method doesn’t benefit from the literature of fluid mechanics, we show that convincing animations in terms of realism can be achieved in real-time.

Keywords

On-surface flow Droplet Real-time Graphics hardware 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baboud, L., Décoret, X.: Realistic water volumes in real-time. In: Eurographics Workshop on Natural Phenomena, pp. 25–32. Eurographics, Vienna, Austria (2006). (URL http://artis.imag.fr/Publications/2006/BD06a)Google Scholar
  2. 2.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992). (DOI http://dx.doi.org/10.1016/0021-9991(92)90240-Y)Google Scholar
  3. 3.
    Chen, J.X., da Vitoria Lobo, N.: Toward interactive-rate simulation of fluids with moving obstacles using navier-stokes equations. Graph. Models Image Process. 57(2), 107–116 (1995). (DOI http://dx.doi.org/10.1006/gmip.1995.1012)Google Scholar
  4. 4.
    Chen, J.X., da Vitoria Lobo, N., Hughes, C.E., Moshell, J.M.: Real-time fluid simulation in a dynamic virtual environment. IEEE Comput. Graph. Appl. 17(3), 52–61 (1997). (DOI http://dx.doi.org/10.1109/38.586018)Google Scholar
  5. 5.
    Dorsey, J., Pedersen, H.K., Hanrahan, P.: Flow and changes in appearance. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 411–420. ACM Press, New York, NY, USA (1996). (DOI http://doi.acm.org/10.1145/237170.237280)Google Scholar
  6. 6.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 736–744. ACM Press, New York, NY, USA (2002). (DOI http://doi.acm.org/10.1145/566570.566645)Google Scholar
  7. 7.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). (DOI http://dx.doi.org/10.1006/jcph.1999.6236)Google Scholar
  8. 8.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM Press, New York, NY, USA (2001). (DOI http://doi.acm.org/10.1145/383259.383261)Google Scholar
  9. 9.
    Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58(5), 471–483 (1996). (DOI http://dx.doi.org/10.1006/gmip.1996.0039)Google Scholar
  10. 10.
    Fournier, P., Habibi, A., Poulin, P.: Simulating the flow of liquid droplets. In: Proceedings of the Graphics Interface 1998 Conference, pp. 133–142. Canadian Human-Computer Communications Society, Vancouver, BC, Canada (1998)Google Scholar
  11. 11.
    de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985). (DOI 10.1103/RevModPhys.57.827)Google Scholar
  12. 12.
    Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152(2), 423–456 (1999). (DOI http://dx.doi.org/10.1006/jcph.1998.6168)Google Scholar
  13. 13.
    Hinsinger, D., Neyret, F., Cani, M.P.: Interactive animation of ocean waves. In: SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 161–166. ACM, New York, NY, USA (2002). (DOI http://doi.acm.org/10.1145/545261.545288)Google Scholar
  14. 14.
    Hong, J.M., Kim, C.H.: Animation of bubbles in liquid. Computer Graphics Forum 22(3), 253–262 (2003). (DOI 10.1111/1467-8659.00672). (URL http://www.blackwell-synergy.com/doi/abs/10.1111/1467-8659.00672)Google Scholar
  15. 15.
    Hong, J.M., Kim, C.H.: Discontinuous fluids. ACM Trans. Graph. 24(3), 915–920 (2005). (DOI http://doi.acm.org/10.1145/1073204.1073283)Google Scholar
  16. 16.
    Iglesias, A., Gálvez, A., Puig-Pey, J.: Generating drop trajectories on parametric surfaces. In: J.Y.Q. Peng, W. Li (ed.) Proceedings of the Seventh CAD/Graphics’2001, pp. 350–357. International Academic Publishers/World Publishing Corporation, Beijing, Kumming, China (2001)Google Scholar
  17. 17.
    Kaneda, K., Ikeda, S., Yamashita, H.: Animation of water droplets moving down a surface. J. Vis. Comput. Animation 10(1), 15–26 (1999)CrossRefGoogle Scholar
  18. 18.
    Kaneda, K., Kagawa, T., Yamashita, H.: Animation of water droplets on a glass plate. In: Proc. Computer Animation ’93, pp. 177–189. Springer (1993)Google Scholar
  19. 19.
    Kaneda, K., Zuyama, Y., Yamashita, H., Nishita, T.: Animation of water droplet flow on curved surfaces. In: Proc. PACIFIC GRAPHICS ’96, pp. 50–65 (1996)Google Scholar
  20. 20.
    Kass, M., Miller, G.: Rapid, stable fluid dynamics for computer graphics. SIGGRAPH Comput. Graph. 24(4), 49–57 (1990). (DOI http://doi.acm.org/10.1145/97880.97884)Google Scholar
  21. 21.
    Liu, Y.Q., Zhu, H.B., Liu, X.H., Wu, E.H.: Real-time simulation of physically based on-surface flow. Visual Comput. 21(8–10), 727–734 (2005)CrossRefGoogle Scholar
  22. 22.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004). (DOI http://doi.acm.org/10.1145/1015706.1015745)Google Scholar
  23. 23.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159. Eurographics Association, Aire-la-Ville, Switzerland (2003)Google Scholar
  24. 24.
    Murta, A., Miller, J.: Modelling and rendering liquids in motion. In: V. Skala (ed.) WSCG’99 Conference Proceedings, pp. 194–201 (1999)Google Scholar
  25. 25.
    Policarpo, F., Oliveira, M.M., Comba, J.L.D.: Real-time relief mapping on arbitrary polygonal surfaces. ACM Trans. Graph. 24(3), 935–935 (2005). (DOI http://doi.acm.org/10.1145/1073204.1073292)Google Scholar
  26. 26.
    Sato, T., Dobashi, Y., Yamamoto, T.: A method for real-time rendering of water droplets taking into account interactive depth of field effects. In: R. Nakatsu, J. Hoshino (eds.) Entertainment Computing: Technologies and Applications, IFIP First International Workshop on Entertainment Computing (IWEC 2002), pp. 125–132. Kluwer, Makuhari, Japan (2002)Google Scholar
  27. 27.
    Song, O.Y., Shin, H., Ko, H.S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005). (DOI http://doi.acm.org/10.1145/1037957.1037962)Google Scholar
  28. 28.
    Stam, J.: Stable fluids. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999). (DOI http://doi.acm.org/10.1145/311535.311548)Google Scholar
  29. 29.
    Thürey, N., Müller-Fischer, M., Schirm, S., Gross, M.: Real-time breaking waves for shallow water simulations. 15th Pacific Conference on Computer Graphics and Applications (PG’07) 0, 39–46 (2007). (DOI http://doi.ieeecomputersociety.org/10.1109/PG.2007.54)Google Scholar
  30. 30.
    Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M., Gross, M.: Real-time simulations of bubbles and foam within a shallow water framework. In: SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 191–198. Eurographics Association, Aire-la-Ville, Switzerland (2007)Google Scholar
  31. 31.
    Tong, R., Kaneda, K., Yamashita, H.: A volume-preserving approach for modeling and animating water flows generated by metaballs. Visual Comput. 18(8), 469–480 (2002)CrossRefGoogle Scholar
  32. 32.
    Wang, H., Mucha, P.J., Turk, G.: Water drops on surfaces. ACM Trans. Graph. 24(3), 921–929 (2005)CrossRefGoogle Scholar
  33. 33.
    Yang, Y., Zhu, C., Zhang, H.: Real-time simulation: Water droplets on glass windows. Comput. Sci. Eng. 6(4), 69–73 (2004). (DOI http://dx.doi.org/10.1109/MCSE.2004.20)Google Scholar
  34. 34.
    Yu, Y.J., Jung, H.Y., Cho, H.G.: A new rendering technique for water droplet using metaball in the gravitation force. In: V. Skala (ed.) WSCG’98 Conference Proceedings, pp. 432–439. Plzen-Bory, Czech Republic (1998)Google Scholar
  35. 35.
    Yu, Y.J., Jung, H.Y., Cho, H.G.: A new water droplet model using metaball in the gravitational field. Comput. Graph. 23(2), 213–222 (1999)CrossRefGoogle Scholar
  36. 36.
    Yuksel, C., House, D.H., Keyser, J.: Wave particles. ACM Trans. Graph. 26(3), 99 (2007)CrossRefGoogle Scholar
  37. 37.
    Zheng, W., Yong, J.H., Paul, J.C.: Simulation of bubbles. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 325–333. Eurographics Association, Aire-la-Ville, Switzerland (2006)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jean-François El Hajjar
    • 1
  • Vincent Jolivet
    • 1
  • Djamchid Ghazanfarpour
    • 1
  • Xavier Pueyo
    • 2
  1. 1.XLIMUniversity of LimogesLimogesFrance
  2. 2.IIiAUniversitat de GironaGironaSpain

Personalised recommendations