Advertisement

The Visual Computer

, 24:249 | Cite as

Consistent mesh partitioning and skeletonisation using the shape diameter function

  • Lior Shapira
  • Ariel Shamir
  • Daniel Cohen-Or
Original Article

Abstract

Mesh partitioning and skeletonisation are fundamental for many computer graphics and animation techniques. Because of the close link between an object’s skeleton and its boundary, these two problems are in many cases complementary. Any partitioning of the object can assist in the creation of a skeleton and any segmentation of the skeleton can infer a partitioning of the object. In this paper, we consider these two problems on a wide variety of meshes, and strive to construct partitioning and skeletons which remain consistent across a family of objects, not a single one. Such families can consist of either a single object in multiple poses and resolutions, or multiple objects which have a general common shape. To achieve consistency, we base our algorithms on a volume-based shape-function called the shape-diameter-function (SDF), which remains largely oblivious to pose changes of the same object and maintains similar values in analogue parts of different objects. The SDF is a scalar function defined on the mesh surface; however, it expresses a measure of the diameter of the object’s volume in the neighborhood of each point on the surface. Using the SDF we are able to process and manipulate families of objects which contain similarities using a simple and consistent algorithm: consistently partitioning and creating skeletons among multiple meshes.

Keywords

Mesh decomposition Skeleton extraction Geometry processing 

References

  1. 1.
    Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19(2,3), 127–153 (2001)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Attene, M., Biasotti, S., Spagnuolo, M.: Shape understanding by contour-driven retiling. Visual Comput. 19(2,3), 127–138 (2003)zbMATHGoogle Scholar
  3. 3.
    Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Visual Comput. 22(3), 181–193 (2006)CrossRefGoogle Scholar
  4. 4.
    Choi, H., Choi, S., Moon, H.: Mathematical theory of medial axis transform. Pac. J. Math. 181(1), 57–88 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)CrossRefGoogle Scholar
  6. 6.
    Cox, M., Cox, T.: Multidimensional Scaling. Chapman and Hall, London (1994)zbMATHGoogle Scholar
  7. 7.
    Dasgupta, S.: Learning mixtures of gaussians. Tech. Rep. UCB/CSD-99-1047, EECS Department, University of California, Berkeley (1999)Google Scholar
  8. 8.
    Dey, T., Giesen, J., Goswami, S.: Shape segmentation and matching with flow discretization. In: Proceedings of the Workshop on Algorithms and Data Structures (WADS 03). Lect. Notes Comput. Sci., vol. 2748, pp. 25–36. Springer, Berlin/Heidelberg (2003)Google Scholar
  9. 9.
    Dey, T.K., Zhao, W.: Approximating the medial axis from the voronoi diagram with a convergence guarantee. In: Algorithms - ESA 2002: 10th Annual European Symposium, pp. 387–398. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gelfand, N., Guibas, L.J.: Shape segmentation using local slippage analysis. In: SGP’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 214–223. ACM Press, New York, NY, USA (2004)CrossRefGoogle Scholar
  11. 11.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer graphics and Interactive Techniques (SIGGRAPH ’01), pp. 203–212. ACM, New York, NY (2001)CrossRefGoogle Scholar
  12. 12.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Visual Comput. (Pac. Graph.) 21(8–10), 865–875 (2005)Google Scholar
  13. 13.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. (Proceedings SIGGRAPH 2003) 22(3), 954–961 (2003)Google Scholar
  14. 14.
    Kraevoy, V., Julius, D., Sheffer, A.: Shuffler: Modeling with interchangeable parts. Visual Comput. (2007) (to appear)Google Scholar
  15. 15.
    Lee, I.K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17(2), 161–177 (2000)CrossRefGoogle Scholar
  16. 16.
    Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Intelligent mesh scissoring using 3D snakes. In: Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, pp. 279–287. IEEE Computer Society, Washington DC (2004)Google Scholar
  17. 17.
    Levin, D.: The approximation power of moving least-squares. Math. Comput. 67(224), 1517–1531 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. In: SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry, pp. 17–26. ACM Press, New York, NY, USA (2004)CrossRefGoogle Scholar
  19. 19.
    Lien, J.M., Amato, N.M.: Simultaneous shape decomposition and skeletonization. Tech. rep., Texas AM University (2005)Google Scholar
  20. 20.
    Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: The 12th Pacific Conference on Computer Graphics and Applications (PG’04), pp. 298–305. IEEE Computer Society, Seoul (2004)Google Scholar
  21. 21.
    Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)CrossRefGoogle Scholar
  22. 22.
    Mortara, M., Patanè, G.: Shape-covering for skeleton extraction. Int. J. Shape Modeling 8(2), 139–158 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1), 227–248 (2003)CrossRefGoogle Scholar
  24. 24.
    Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23(3), 613–622 (2004)CrossRefGoogle Scholar
  25. 25.
    Page, D., Abidi, M., Koschan, A., Zhang, Y.: Object representation using the minima rule and superquadrics for under vehicle inspection. In: Proceedings of the 1st IEEE Latin American Conference on Robotics and Automation, pp. 91–97 (2003)Google Scholar
  26. 26.
    Page, D., Koschan, A., Abidi, M.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Conference on Computer Vision and Pattern Recognition (CVPR ’03) – Volume II, pp. 27–32. IEEE Computer Society, Los Alamitos, CA (2003)Google Scholar
  27. 27.
    Shamir, A.: Segmentation and shape extraction of 3D boundary meshes. In: State-of-the-Art Report, Proceedings Eurographics 2006, The Eurographics Association (2006)Google Scholar
  28. 28.
    Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Comput. Graph. Forum 21(3) (2002) (Proceedings Eurographics 2002)Google Scholar
  29. 29.
    Svensson, S., di Baja, G.S.: Using distance transforms to decompose 3d discrete objects. Image Vis. Comput. 20(8), 529–540 (2002)CrossRefGoogle Scholar
  30. 30.
    Tierny, J., Vandeborre, J.P., Daoudi, M.: 3d Mesh Skeleton Extraction Using Topological and Geometrical Analyses. In: 14th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2006), pp. 85–94. Taipei, Taiwan (2006) (URL http://www.lifl.fr/∼tierny/pacific06.html)Google Scholar
  31. 31.
    Tierny, J., Vandeborre, J.P., Daoudi, M.: Topology driven 3D mesh hierarchical segmentation. In: IEEE International Conference on Shape Modeling and Applications (SMI’2007). IEEE, Lyon (2007) (URL http://www.lifl.fr/∼tierny/smi07.html)Google Scholar
  32. 32.
    Verroust, A., Lazarus, F.: Extracting skeletal curves from 3D scattered data. Visual Comput. 16(1), 15–25 (2000) (URL citeseer.ist.psu.edu/verroust97extracting.html)Google Scholar
  33. 33.
    Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Process. Lett. 15(1), 77–87 (2002) (URL citeseer.ist.psu.edu/article/vlassis00greedy.html)Google Scholar
  34. 34.
    Wu, F.C., Ma, W.C., Liang, R.H., Chen, B.Y., Ouhyoung, M.: Domain connected graph: the skeleton of a closed 3d shape for animation. Visual Comput. 22(2), 117–135 (2006)CrossRefGoogle Scholar
  35. 35.
    Zabih, R., Kolmogorov, V.: Spatially coherent clustering using graph cuts. cvpr 02, 437–444 (2004) (DOI http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.238)Google Scholar
  36. 36.
    Zhu, S.C., Yuille, A.L.: Forms: A flexible object recognition and modeling system. Int. J. Comput. Vis. 20(3), 187–212 (1996)CrossRefGoogle Scholar
  37. 37.
    Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 26(5), 733–743 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Tel-Aviv UniversityTel-AvivIsrael
  2. 2.The Interdisciplinary CenterHerzeliyaIsrael

Personalised recommendations