The Visual Computer

, Volume 23, Issue 12, pp 1005–1014 | Cite as

Improved error estimate for extraordinary Catmull–Clark subdivision surface patches

Original Article

Abstract

Based on an optimal estimate of the convergence rate of the second order norm, an improved error estimate for extraordinary Catmull–Clark subdivision surface (CCSS) patches is proposed. If the valence of the extraordinary vertex of an extraordinary CCSS patch is even, a tighter error bound and, consequently, a more precise subdivision depth for a given error tolerance, can be obtained. Furthermore, examples of adaptive subdivision illustrate the practicability of the error estimation approach.

Keywords

Catmull–Clark subdivision surfaces Error estimate Subdivision depth Adaptive subdivision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)CrossRefGoogle Scholar
  2. 2.
    Chen, G., Cheng, F.: Matrix based subdivision depth computation for extra-ordinary Catmull–Clark subdivision surface patches. In: Proceedings of GMP 2006. LNCS, vol. 4077, pp. 545–552. Springer, Berlin Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cheng, F., Chen, G., Yong, J.: Subdivision depth computation for extra-ordinary Catmull–Clark subdivision surface patches. In: Proceedings of CGI 2006. LNCS, vol. 4035, pp. 404–416. Springer, Berlin Heidelberg (2006)Google Scholar
  4. 4.
    Cheng, F., Yong, J.: Subdivision depth computation for Catmull-Clark subdivision surfaces. Comput. Aided Des. Appl. 3(1–4), 485–494 (2006)Google Scholar
  5. 5.
    Doo, D., Sabin, M.A.: Behaviour of recursive subdivision surfaces near extraordinary points. Comput. Aided Des. 10(6), 356–360 (1978)CrossRefGoogle Scholar
  6. 6.
    Huang, Z., Wang, G.: Distance between a Catmull–Clark subdivision surface and its limit mesh. In: Proceedings of ACM Solid and Physical Modeling Symposium, pp. 233–240. ACM, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Loop, C.T.: Smooth Subdivision Surfaces Based on Triangles. Master’s thesis, Department of Mathematics, University of Utah (1987)Google Scholar
  8. 8.
    Lutterkort, D., Peters, J.: Tight linear envelopes for splines. Numer. Math. 89(4), 735–748 (2001)MATHMathSciNetGoogle Scholar
  9. 9.
    Stam, J.: Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of SIGGRAPH 98, Annual Conference Series, pp. 395–404. ACM, New York (1998)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Electronic Engineering and Computer SciencePeking UniversityBeijingP.R. China
  2. 2.Key Laboratory of High Confidence Software TechnologiesMinistry of EducationBeijingP.R. China

Personalised recommendations