Advertisement

The Visual Computer

, Volume 23, Issue 12, pp 975–986 | Cite as

Dynamic Delaunay tetrahedralisation of a deforming surface

  • Jean-Baptiste DebardEmail author
  • Romain Balp
  • Raphaëlle Chaine
Original Article

Abstract

Reconstruction algorithms make it possible to retrieve a surface from the Delaunay tetrahedralisation (DT) of a point sampling, whose density reflects the surface local geometry and thickness. Most of these algorithms are static and some work remains to be done to handle deforming surfaces. In such case, we defend the idea that each point of the sampling should move with the surface using the information given by the motion to allow fast reconstruction. In this article, we tackle the problem of producing a good evolving sampling of a deforming surface S, and maintaining its DT along the motion. The surface is known only through a projection operator (O 1):ℝ3→S, and a normal operator (O 2) that returns the oriented normal at a point on the surface. On that basis, we offer some perspectives on how reconstruction algorithms can be extended to the tracking of deforming surfaces.

Keywords

Delaunay tetrahedralisation Surface reconstruction Particle sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allègre, R., Chaine, R., Akkouche, S.: A flexible framework for surface reconstruction from large point sets. Comput. Graph. 31(2), 190–204 (2007)CrossRefGoogle Scholar
  2. 2.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA ’01: Proceedings of the 6th ACM Symposium on Solid Modeling and Applications, pp. 249–266. ACM, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Borodachov, S.V., Hardin, D.P., Saff, E.B.: Asymptotics of best-packing on rectifiable sets. ArXiv Mathematical Physics e-prints (2006)Google Scholar
  4. 4.
    Cazals, F., Giesen, J.: Delaunay Triangulation Based Surface Reconstruction. Springer, Berlin Heidelberg New York (2006)Google Scholar
  5. 5.
    Chaine, R.: A geometric-based convection approach of 3-d reconstruction. In: Symposium on Geometry Processing, pp. 218–229. Eurographics Association, Aire-la-Ville, Switzerland (2003)Google Scholar
  6. 6.
    Cheng, H.L., Dey, T.K., Edelsbrunner, H., Sullivan, J.: Dynamic skin triangulation. In: SODA ’01: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 47–56. Society for Industrial and Applied Mathematics, Philadelphia, PA (2001)Google Scholar
  7. 7.
    Computational Geometry Algorithms Library: http://www.cgal.org. Cited Nov. 2006Google Scholar
  8. 8.
    Crossno, P., Angel, E.: Isosurface extraction using particle systems. In: VIS ’97: Proceedings of the 8th Conference on Visualization ’97, pp. 495ff. IEEE, Los Alamitos, CA (1997)Google Scholar
  9. 9.
    Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, New York (2006)Google Scholar
  10. 10.
    Edelsbrunner, H., Shah, N.R.: Triangulating topological spaces. In: SCG ’94: Proceedings of the 10th Annual Symposium on Computational Geometry, pp. 285–292. ACM, New York (1994)CrossRefGoogle Scholar
  11. 11.
    de Figueiredo, L.H., de Miranda Gomes, J., Terzopoulos, D., Velho, L.: Physically-based methods for polygonization of implicit surfaces. In: Proceedings of the Conference on Graphics Interface ’92, pp. 250–257. Kaufmann, San Francisco (1992)Google Scholar
  12. 12.
    Guibas, L.: Kinetic Data Structures: State of the Art. Stanford University, Palo Alto, California, USA (2004)Google Scholar
  13. 13.
    Guibas, L., Russel, D.: An empirical comparison of techniques for updating Delaunay triangulations. In: SCG ’04: Proceedings of the 20th Annual Symposium on Computational Geometry, pp. 170–179. ACM, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Hardin, D.P., Saff, E.B.: Discretizing manifold via minimum energy points. Notices Am. Math. Soc. 51(10), 1186–1194 (2004)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Karkanis, T., Stewart, A.J.: Curvature-dependent triangulation of implicit surfaces. IEEE Comput. Graph. Appl. 21(2), 60–69 (2001)CrossRefGoogle Scholar
  16. 16.
    Levet, F., Granier, X., Schlick, C.: Fast sampling of implicit surfaces by particle systems. In: SMI ’06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), p. 39. IEEE, Washington, DC (2006)Google Scholar
  17. 17.
    Levet, F., Reuter, P., Schlick, C.: Anisotropic sampling for differential point rendering of implicit surfaces. J. WSCG 2005 13 (2005)Google Scholar
  18. 18.
    Meyer, M.D., Georgel, P., Whitaker, R.T.: Robust particle systems for curvature dependent sampling of implicit surfaces. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 124–133. IEEE, Washington, DC (2005)CrossRefGoogle Scholar
  19. 19.
    Mousa, M., Chaine, R., Akkouche, S.: Direct spherical harmonics transform of a triangulated mesh. J. Graph. Tools 11(2), 17–26 (2006)Google Scholar
  20. 20.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: VIS ’02: Proceedings of the Conference on Visualization ’02, pp. 163–170. IEEE, Washington, DC (2002)Google Scholar
  21. 21.
    Röch, A., Ruhl, M., Saupe, D.: Interactive visualization of implicit surfaces with singularities. Eurograph. Comput. Graph. Forum 16(5), 295–306 (1997)CrossRefGoogle Scholar
  22. 22.
    Rodrian, H., Moock, H.: Dynamic triangulation of animated skeleton-based implicit surfaces. In: Proceeding of the Annual Conference on Implicit Surfaces ’96, pp. 37–52. ACM (1996)Google Scholar
  23. 23.
    Sankaranarayanan, H.S.J., Varshney, A.: Fast k-neighborhood algorithm for large point-clouds. In: Proceedings of the 3rd IEEE/Eurographics Symposium on Point-Based Graphics. ACM, Boston, MA, USA (2006)Google Scholar
  24. 24.
    Szeliski, R., Tonnesen, D.: Surface modeling with oriented particle systems. In: SIGGRAPH ’92: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 185–194. ACM, New York (1992)CrossRefGoogle Scholar
  25. 25.
    Turk, G.: Generating textures on arbitrary surfaces using reaction-diffusion. In: SIGGRAPH ’91: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 289–298. ACM, New York (1991)CrossRefGoogle Scholar
  26. 26.
    Turk, G.: Re-tiling polygonal surfaces. In: SIGGRAPH ’92: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 55–64. ACM, New York (1992)CrossRefGoogle Scholar
  27. 27.
    Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342. ACM/Addison-Wesley, New York (1999)CrossRefGoogle Scholar
  28. 28.
    Witkin, A.P., Heckbert, P.S.: Using particles to sample and control implicit surfaces. In: SIGGRAPH ’94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 269–277. ACM, New York (1994)CrossRefGoogle Scholar
  29. 29.
    Zonenschein, R., Gomes, J., Velho, L., de Figueiredo, L.: Controlling texture mapping onto implicit surfaces with particle systems. In: Proceedings of Implicit Surfaces ’98, pp. 131–138. ACM, New York, USA (1998)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jean-Baptiste Debard
    • 1
    Email author
  • Romain Balp
    • 1
  • Raphaëlle Chaine
    • 2
  1. 1.Computer Science DepartmentTsinghua UniversityBeijingChina
  2. 2.LIRISUniversité Lyon 1LyonFrance

Personalised recommendations