Advertisement

The Visual Computer

, Volume 23, Issue 12, pp 1015–1025 | Cite as

3D shape metamorphosis based on T-spline level sets

  • Huaiping Yang
  • Bert Jüttler
Original Article

Abstract

We propose a new method for 3D shape metamorphosis, where the in-between objects are constructed by using T-spline scalar functions. The use of T-spline level sets offers several advantages: First, it is convenient to handle complex topology changes without the need of model parameterization. Second, the constructed objects are smooth (C2 in our case). Third, high quality meshes can be easily obtained by using the marching triangulation method. Fourth, the distribution of the degrees of freedom can be adapted to the geometry of the object.

Given one source object and one target object, we firstly find a global coordinate transformation to approximately align the two objects. The T-spline control grid is adaptively generated according to the geometry of the aligned objects, and the initial T-spline level set is found by approximating the signed distance function of the source object. Then we use an evolution process, which is governed by a combination of the signed distance function of the target object and a curvature-dependent speed function, to deform the T-spline level set until it converges to the target shape. Additional intermediate objects are inserted at the beginning/end of the sequence of generated T-spline level sets, by gradually projecting the source/target object to the initial/final T-spline level set. A fully automatic algorithm is developed for the above procedures. Experimental results are presented to demonstrate the effectiveness of our method.

Keywords

Computer animation Morphing T-spline Level sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexa, M.: Recent advances in mesh morphing. Comput. Graph. Forum 21(2), 173–197 (2002)CrossRefGoogle Scholar
  2. 2.
    Bao, H., Peng, Q.: Interactive 3D morphing. Comput. Graph. Forum 17(3), 23–30 (1998)CrossRefGoogle Scholar
  3. 3.
    Bao, Y., Guo, X., Qin, H.: Physically based morphing of point-sampled surfaces: animating geometrical models. Comput. Animat. Virtual Worlds 16(3–4), 509–518 (2005)CrossRefGoogle Scholar
  4. 4.
    Beier, T., Neely, S.: Feature-based image metamorphosis. In: Proceedings of SIGGRAPH’92, pp. 35–42. ACM Press, New York, NY (1992)Google Scholar
  5. 5.
    Botsch, M., Bommes, D., Kobbelt, L.: Efficient linear system solvers for mesh processing. In: Martin, R., Bez, H., Sabin, M. (eds.) Mathematics of Surfaces XI. LNCS, vol. 3604, pp. 62–83. Springer, Berlin (2005)CrossRefGoogle Scholar
  6. 6.
    Breen, D.E., Whitaker, R.T.: A level-set approach for the metamorphosis of solid models. IEEE Trans. Vis. Comput. Graph. 7(2), 173–192 (2001)CrossRefGoogle Scholar
  7. 7.
    Chen, M., Jones, M.W., Townsend, P.: Volume distortion and morphing using disk fields. Comput. Graph. 20(4), 567–575 (1996)CrossRefGoogle Scholar
  8. 8.
    Cohen-Or, D., Solomovic, A., Levin, D.: Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17(2), 116–141 (1998)CrossRefGoogle Scholar
  9. 9.
    Galin, E., Akkouche, S.: Blob metamorphosis based on Minkowski sums. Comput. Graph. Forum (Eurographics’96) 15(3), 143–152 (1996)CrossRefGoogle Scholar
  10. 10.
    Hartmann, E.: A marching method for the triangulation of surfaces. Vis. Comput. 14(3), 95–108 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    He, T., Wang, S., Kaufman, A.: Wavelet-based volume morphing. In: Proceedings of VIS’94, pp. 85–92. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
  12. 12.
    Hughes, J.F.: Scheduled Fourier volume morphing. In: Proceedings of SIGGRAPH’92, pp. 43–46. ACM Press, New York, NY (1992)Google Scholar
  13. 13.
    Jin, X., Liu, S., Wang, C.L., Feng, J., Sun, H.: Blob-based liquid morphing. J. Vis. Comput. Animat. 16(3–4), 391–403 (2005)Google Scholar
  14. 14.
    Kanai, T., Suzuki, H., Kimura, F.: Metamorphosis of arbitrary triangular meshes. IEEE Comput. Graph. Appl. 20(2), 62–75 (2000)CrossRefGoogle Scholar
  15. 15.
    Kaul, A., Rossignac, J.: Solid-interpolating deformations: construction and animation of PIPS. In: Proceedings of Eurographics’91, pp. 493–505. Elsevier Science Publishers, Vienna, Austria (1991)Google Scholar
  16. 16.
    Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. (SIGGRAPH’04) 23(3), 861–869 (2004)CrossRefGoogle Scholar
  17. 17.
    Lazarus, F., Verroust, A.: Three-dimensional metamorphosis: a survey. Vis. Comput. 14(8–9), 373–389 (1998)CrossRefGoogle Scholar
  18. 18.
    Lee, T.Y., Yao, C.Y., Chu, H.K., Tai, M.J., Chen, C.C.: Generating genus-n-to-m mesh morphing using spherical parameterization. J. Vis. Comput. Animat. 17(3–4), 433–443 (2006)Google Scholar
  19. 19.
    Lerios, A., Garfinkle, C.D., Levoy, M.: Feature-based volume metamorphosis. In: Proceedings of SIGGRAPH’95, pp. 449–456. ACM Press, New York, NY (1995)Google Scholar
  20. 20.
    Nieda, T., Pasko, A., Kunii, T.L.: Detection and classification of topological evolution for linear metamorphosis. Vis. Comput. 22(5), 346–356 (2006)CrossRefGoogle Scholar
  21. 21.
    Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concepts, implementation and applications. Vis. Comput. 11(8), 429–446 (1995)Google Scholar
  22. 22.
    Payne, B., Toga, A.: Distance field manipulation of surface models. IEEE Comput. Graph. Appl. 12(1), 65–71 (1992)zbMATHCrossRefGoogle Scholar
  23. 23.
    Rossignac, J., Kaul, A.: AGRELS and BIBs: metamorphosis as a Bézier curve in the space of polyhedra. In: Proceedings of Eurographics’94, pp. 179–184. Elsevier Science Publishers, Oslo, Norway (1994)Google Scholar
  24. 24.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)CrossRefGoogle Scholar
  25. 25.
    Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of SIGGRAPH’85, pp. 245–254. ACM Press, New York, NY (1985)Google Scholar
  26. 26.
    Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proceedings of SIGGRAPH’99, pp. 335–342. ACM Press, New York, NY (1999)Google Scholar
  27. 27.
    Yan, H.B., Hu, S.M., Martin, R.: 3D morphing using strain field interpolation. J. Comput. Sci. Technol. 22(1), 147–155 (2007)CrossRefGoogle Scholar
  28. 28.
    Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. Technical Report 01, http://www.ig.jku.at. Cited (2005)Google Scholar
  29. 29.
    Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: Proceedings of SMI’06, pp. 247–252. IEEE Computer Society Press, Matsushima, Japan (2006)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria

Personalised recommendations