The Visual Computer

, Volume 23, Issue 8, pp 583–605 | Cite as

Survey of semi-regular multiresolution models for interactive terrain rendering

Original Article

Abstract

Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multiresolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster-based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accuracy.

Keywords

Terrain rendering Multiresolution triangulation Semi-regular meshes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space filling curves and their use in the design of geometric data structures. Theor. Comput. Sci. 181, 3–15 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balmelli, L., Ayer, S., Vetterli, M.: Efficient algorithms for embedded rendering of terrain models. In: Proceedings IEEE International Conference on Image Processing ICIP 98, pp. 914–918 (1998)Google Scholar
  3. 3.
    Balmelli, L., Liebling, T., Vetterli, M.: Computational analysis of 4-8 meshes with application to surface simplification using global error. In: Electronic Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG) (2001)Google Scholar
  4. 4.
    Bao, X., Pajarola, R.: LOD-based clustering techniques for optimizing large-scale terrain storage and visualization. In: Proceedings SPIE Conference on Visualization and Data Analysis, pp. 225–235 (2003)Google Scholar
  5. 5.
    Bao, X., Pajarola, R., Shafae, M.: SMART: an efficient technique for massive terrain visualization from out-of-core. In: Proceedings Vision, Modeling and Visualization (VMV), pp. 413–420 (2004)Google Scholar
  6. 6.
    Baumann, K., Döllner, J., Hinrichs, K., Kersting, O.: A hybrid, hierarchical data structure for real-time terrain visualization. In: Computer Graphics International, pp. 85–92 (1999)Google Scholar
  7. 7.
    Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.: BDAM: batched dynamic adaptive meshes for high performance terrain visualization. In: Proceedings EUROGRAPHICS, pp. 505–514 (2003).Google Scholar
  8. 8.
    Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.: Planet-sized batched dynamic adaptive meshes (P-BDAM). In: Proceedings IEEE Visualization, pp. 147–155. IEEE Press, Washington, DC (2003)Google Scholar
  9. 9.
    Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.: Batched multi triangulation. In: Proceedings IEEE Visualization, pp. 207–214. IEEE Press, Washington, DC (2005)Google Scholar
  10. 10.
    Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Comput. Graph. 22(1), 37–54 (1998)CrossRefGoogle Scholar
  11. 11.
    De Floriani, L., Kobbelt, L., Puppo, E.: A survey on data structures for level-of-detail models. In: N. Dodgson, M. Floater, M. Sabin (eds.) Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pp. 49–74. Springer, Berlin Heidelberg New York (2004)Google Scholar
  12. 12.
    De Floriani, L., Magillo, P., Puppo, E.: Building and traversing a surface at variable resolution. In: IEEE Visualization’97 (1997)Google Scholar
  13. 13.
    De Floriani, L., Marzano, P., Puppo, E.: Multiresolution models for topographic surface description. Vis. Comput. 12(7), 317–345 (1996)Google Scholar
  14. 14.
    De Floriani, L., Puppo, E., Magillo, P.: A formal approach to multiresolution modeling. In: R. Klein, W. Straßer, R. Rau (eds.) Geometric Modeling: Theory and Practice, pp. 302–323. Springer, Berlin Heidelberg New York (1997)Google Scholar
  15. 15.
    Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C., Aldrich, C., Mineev-Weinstein, M.B.: ROAMing terrain: Real-time optimally adapting meshes. In: Proceedings IEEE Visualization, pp. 81–88 (1997)Google Scholar
  16. 16.
    Evans, W., Kirkpatrick, D., Townsend, G.: Right-triangulated irregular networks. Algorithmica 30(2), 264–286 (2001)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Falby, J., Zyda, M., Pratt, D., Mackey, L.: NPSNET: hierarchical data structures for real-time 3-dimensional visual simulation. Comput. Graph. 17(1), 65–69 (1993)CrossRefGoogle Scholar
  18. 18.
    Garland, M.: Multiresolution modeling: survey and future opportunities. Eurographics State of The Art Report (STAR), Aire-la-Ville, Switzerland (1999)Google Scholar
  19. 19.
    Gerstner, T.: Multiresolution compression and visualization of global topographic data. Tech. Rep. 29. Institute for Applied Mathematics, University of Bonn (1999)Google Scholar
  20. 20.
    Gerstner, T.: Top-down view-dependent terrain triangulation using the octagon metric. Tech. Rep. Institute of Applied Mathematics, University of Bonn (2003)Google Scholar
  21. 21.
    Gerstner, T., Pajarola, R.: Topology preserving and controlled topology simplifying multiresolution isosurface extraction. In: Proceedings IEEE Visualization, pp. 259–266. IEEE Press, Washington, DC (2000)Google Scholar
  22. 22.
    Gerstner, T., Rumpf, M., Weikard, U.: Error indicators for multilevel visualization and computing on nested grids. Comput. Graph. 24(3), 363–373 (2000)CrossRefGoogle Scholar
  23. 23.
    Gobbetti, E., Marton, F., Cignoni, P., Benedetto, M.D., Ganovelli, F.: C-BDAM: compressed batched dynamic adaptive meshes for terrain rendering. Comput. Graph. Forum 25(3), 333–342 (2006)CrossRefGoogle Scholar
  24. 24.
    Hebert, D., Kim, H.: Image encoding with triangulation wavelets. In: Proceedings of SPIE, vol. 2569, pp. 381–392. SPIE, Bellingham, WA (1995)Google Scholar
  25. 25.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. In: SIGGRAPH 97 Course Notes 25 (1997)Google Scholar
  26. 26.
    Hitchner, L.E., McGreevy, M.W.: Methods for user-based reduction of model complexity for virtual planetary exploration. In: Proceedings Symposium on Electronic Imaging, pp. 1–16. SPIE, Bellingham, WA (1993)Google Scholar
  27. 27.
    Hoppe, H.: Smooth view-dependent level-of-detail control and its application to terrain rendering. In: Proceedings IEEE Visualization, pp. 35–42. IEEE Press, Washington, DC (1998)Google Scholar
  28. 28.
    Hwa, L.M., Duchaineau, M.A., Joy, K.I.: Real-time optimal adaptation for planetary geometry and texture: 4-8 tile hierarchies. IEEE Trans. Vis. Comput. Graph. 11(4), 355–368 (2005)CrossRefGoogle Scholar
  29. 29.
    Koller, D., Lindstrom, P., Ribarsky, W., Hodges, L.F., Faust, N., Turner, G.: Virtual GIS: A real-time 3D geographic information system. In: Proceedings IEEE Visualization, pp. 94–100. IEEE Press, Washington, DC (1995)Google Scholar
  30. 30.
    Lario, R., Pajarola, R., Tirado, F.: Hyperblock-QuadTIN: Hyper-block quadtree based triangulated irregular networks. In: Proceedings IASTED Invernational Conference on Visualization, Imaging and Image Processing (VIIP), pp. 733–738 (2003)Google Scholar
  31. 31.
    Levenberg, J.: Fast view-dependent level-of-detail rendering using cached geometry. In: Proceedings IEEE Visualization, pp. 259–266. IEEE Press, Washington, DC (2002)Google Scholar
  32. 32.
    Lindstrom, P., Koller, D., Hodges, L.F., Ribarsky, W., Faust, N., Turner, G.: Level-of-detail management for real-time rendering of phototextured terrain. Tech. Rep. TR 95-06, Graphics, Visualization, and Usability Center, Georgia Tech (1995)Google Scholar
  33. 33.
    Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N.: An integrated global GIS and visual simulation system. Tech. Rep. GVU Technical Report 97-0, Georgia Tech Research Institute (1997)Google Scholar
  34. 34.
    Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L.F., Faust, N., Turner, G.A.: Real-time, continuous level of detail rendering of height fields. In: Proceedings ACM SIGGRAPH, pp. 109–118. ACM SIGGRAPH, New York (1996)Google Scholar
  35. 35.
    Lindstrom, P., Pascucci, V.: Visualization of large terrains made easy. In: Proceedings IEEE Visualization, pp. 363–370. IEEE Press, Washington, DC (2001)Google Scholar
  36. 36.
    Lindstrom, P., Pascucci, V.: Terrain simplification simplified: a general framework for view-dependent out-of-core visualization. IEEE Trans. Vis. Comput. Graph. 8(3), 239–254 (2002)CrossRefGoogle Scholar
  37. 37.
    Losasso, F., Hoppe, H.: Geometry clipmaps: terrain rendering using nested regular grids. ACM Trans. Graph. 23(3), 769–776 (2004)CrossRefGoogle Scholar
  38. 38.
    Luebke, D.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)CrossRefGoogle Scholar
  39. 39.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann, San Francisco, CA (2003)Google Scholar
  40. 40.
    Malvar, H.S.: Fast progressive image coding without wavelets. In: Data Compression Conference, pp. 243–252 (2000)Google Scholar
  41. 41.
    Ohlberger, M., Rumpf, M.: Adaptive projection operators in multiresolution scientific visualization. IEEE Trans. Vis. Comput. Graph. 5(1), 74–93 (1999)CrossRefGoogle Scholar
  42. 42.
    Pajarola, R.: Large scale terrain visualization using the restricted quadtree triangulation. In: Proceedings IEEE Visualization, pp. 19–26 (1998)Google Scholar
  43. 43.
    Pajarola, R.: Large scale terrain visualization using the restricted quadtree triangulation. Tech. Rep. 292, Dept. of Computer Science, ETH Zürich (1998)Google Scholar
  44. 44.
    Pajarola, R., Antonijuan, M., Lario, R.: QuadTIN: Quadtree based triangulated irregular networks. In: Proceedings IEEE Visualization, pp. 395–402. IEEE Press, Washington, DC (2002)Google Scholar
  45. 45.
    Pajarola, R., Ohler, T., Stucki, P., Szabo, K., Widmayer, P.: The Alps at your fingertips: virtual reality and geoinformation systems. In: Proceedings International Conference on Data Engineering (ICDE), pp. 550–557. IEEE Press, Washington, DC (1998)Google Scholar
  46. 46.
    Pajarola, R., Widmayer, P.: Virtual geoexploration: concepts and design choices. Int. J. Comput. Geom. Appl. 11(1), 1–14 (2001)CrossRefGoogle Scholar
  47. 47.
    Pomeranz, A.A.: ROAM Using Surface Triangle Clusters (RUSTiC). Dissertation, University of California at Davis (2000)Google Scholar
  48. 48.
    Puppo, E.: Variable resolution terrain surfaces. In: Proceedings of the 8th Canadian Conference on Computational Geometry, pp. 202–210 (1996)Google Scholar
  49. 49.
    Puppo, E.: Variable resolution triangulations. Comput. Geom. 11(3–4), 219–238 (1998)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Reddy, M., Leclerc, Y., Iverson, L., Bletter, N.: TerraVision II: visualizing massive terrain databases in VRML. IEEE Comput. Graph. Appl. 19(2), 30–38 (1999)CrossRefGoogle Scholar
  51. 51.
    Rivara, M.C.: A discussion on the triangulation refinement problem. In: Proceedings of the 5th Canadian Conference on Computational Geometry, pp. 42–47 (1993)Google Scholar
  52. 52.
    Rivara, M.C.: A discussion on mixed (longest-side midpoint insertion) delaunay techniques for the triangulation refinement problem. In: Proceedings of the 4th International Meshing Roundtable, pp. 335–346 (1995)Google Scholar
  53. 53.
    Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison Wesley, Reading, MA (1989)Google Scholar
  54. 54.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison Wesley, Reading, MA (1989)Google Scholar
  55. 55.
    Schneider, J., Westermann, R.: GPU-friendly high-quality terrain rendering. J. WSCG 14(1–3), 49–56 (2006)Google Scholar
  56. 56.
    Schrack, G.: Finding neighbors of equal size in linear quadtrees and octrees in constant time. Comput. Vision Graph. Image Process. Image Underst. 55(2), 221–230 (1992)MATHGoogle Scholar
  57. 57.
    Sivan, R.: Surface modeling using quadtrees. Tech. Rep. CS-TR-3609, University of Maryland, College Park, Computer Vision Laboratory, Center for Automation Research (1996)Google Scholar
  58. 58.
    Sivan, R., Samet, H.: Algorithms for constructing quadtree surface maps. In: Proceedings of the 5th International Symposium on Spatial Data Handling, pp. 361–370 (1992)Google Scholar
  59. 59.
    Ulrich, T.: Rendering massive terrains using chunked level of detail. In: Super-size-it! Scaling up to Massive Virtual Worlds (ACM SIGGRAPH Tutorial Notes). ACM SIGGRAPH, New York (2000)Google Scholar
  60. 60.
    Velho, L.: Using semi-regular 4-8 meshes for subdivision surfaces. J. Graph. Tools 5(3), 35–47 (2001)Google Scholar
  61. 61.
    Velho, L., Gomes, J.: Variable resolution 4-k meshes: concepts and applications. Comput. Graph. Forum 19(4), 195–214 (2000)CrossRefGoogle Scholar
  62. 62.
    Von Herzen, B., Barr, A.H.: Accurate triangulations of deformed, intersecting surfaces. In: Proceedings ACM SIGGRAPH, pp. 103–110. ACM SIGGRAPH, New York (1987)Google Scholar
  63. 63.
    Wahl, R., Massing, M., Degener, P., Guthe, M., Klein, R.: Scalable compression and rendering of textured terrain data. J. WSCG 12, 521–528 (2004)Google Scholar
  64. 64.
    Wloka, M.: Optimizing the graphics pipeline. In: Programming Graphics Hardware (Eurographics 2004 Tutorial No. 4). Eurographics Association, Aire-la-Ville, Switzerland (2004)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Visualization and MultiMedia Lab, Department of InformaticsUniversity of ZürichZürichSwitzerland
  2. 2.Visual Computing GroupCenter for Advanced Studies, Research, and Development in Sardinia (CRS4)PulaItaly

Personalised recommendations