The Visual Computer

, Volume 23, Issue 9–11, pp 881–890 | Cite as

Contextual void patching for digital elevation models

  • Lakin Wecker
  • Faramarz Samavati
  • Marina Gavrilova
Original Article

Abstract

Digital terrain models can be created by gathering a set of measurements from geometric objects. For various reasons, these models may be incomplete and thus fail to meet the requirements defined by their potential applications. In this work, we develop a novel multiresolution approach to repair the voids commonly found in digital elevation models (DEM). We use the overall shape and structure of the surrounding terrain to build a smooth patch for the void. Then, using a multiresolution approach obtained from reverse Chaikin subdivision, we extract the low-scale characteristics from the surrounding terrain and apply them to the smooth patch. The results demonstrate that our approach is effective in synthesizing models with realistic characteristics.

Keywords

Multiresolution Terrain Void patching Context sensitive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashikhmin, M.: Synthesizing natural textures. In: SI3D ’01: Proceedings of the 2001 Symposium on Interactive 3D graphics, pp. 217–226. ACM Press, New York (2001)Google Scholar
  2. 2.
    Baraquet, G., Sharir, M.: Filling gaps in the boundary of a polyhedron. Comput. Aided Geom. Des. 12(2), 207–229 (1995)CrossRefGoogle Scholar
  3. 3.
    Bartels, R.H., Beatty, J., Barsky, B.: An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (1987)MATHGoogle Scholar
  4. 4.
    Bartels, R.H., Samavati, F.F.: Reversing subdivision rules: Local linear conditions and observations on inner products. J. Comput. Appl. Math. 119(1–2), 29–67 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    Bonet, J.S.D.: Multiresolution sampling procedure for analysis and synthesis of texture images. In: Computer Graphics, pp. 361–368. ACM SIGGRAPH (1997). (URL http://www.debonet.com/Research/TextureSynthesis)Google Scholar
  6. 6.
    Brosz, J.: Terrain Modeling by Example. Master’s thesis, University of Calgary, Calgary, Alberta (2005)Google Scholar
  7. 7.
    Brosz, J., Samavati, F.F., Costa Sousa, M.: Terrain synthesis by-example. In: International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 122–133. In Association with Eurographics (2006)Google Scholar
  8. 8.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76. ACM Press, New York (2001)Google Scholar
  9. 9.
    Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang tiles for image and texture generation. ACM Trans. Graph. 22, 287–294 (2003)CrossRefGoogle Scholar
  10. 10.
    Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: First International Symposium on 3D Data Processing Visualization and Transmission, pp. 428–861. IEEE (2002)Google Scholar
  11. 11.
    Drori, I., Cohen-Or, D., Yeshurun, H.: Fragment-based image completion. ACM Trans. Graph. 22(3), 303–312 (2003)CrossRefGoogle Scholar
  12. 12.
    Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. Proceedings of SIGGRAPH 2001, pp. 341–346. ACM Press, New York (2001)Google Scholar
  13. 13.
    Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: IEEE International Conference on Computer Vision, pp. 1033–1038. Corfu, Greece (1999)Google Scholar
  14. 14.
    Fournier, A., Fussell, D., Carpenter, L.: Computer rendering of stochastic models. Commun. ACM 25(6), 371–384 (1982)CrossRefGoogle Scholar
  15. 15.
    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 327–340. ACM Press, New York, NY, USA (2001)Google Scholar
  16. 16.
    Li, B., Qi, Y., Shen, X.: An image inpainting method. Ninth International Conference on Computer Aided Design and Computer Graphics, 2005, pp. 531–536. IEEE Computer Society, Washington, DC (2005)Google Scholar
  17. 17.
    Liang, L., Liu, C., Xu, Y., Guo, B., Shum, H.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001)CrossRefGoogle Scholar
  18. 18.
    Liepa, P.: Filling holes in meshes. In: SGP ’03: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 200–205. Eurographics Association (2003)Google Scholar
  19. 19.
    Samavati, F.F., Bartels, R.H., Olsen, L.: Local b-spline multiresolution with examples in iris synthesis and volumetric rendering. In: Synthesis and Analysis in Biometrics. World Scientific Publishing, Singapore (2006)Google Scholar
  20. 20.
    Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. ACM Trans. Graph. 23(3), 878–887 (2004)CrossRefGoogle Scholar
  21. 21.
    Stollinitz, E., Derose, T., Salesin, D.: Wavelets for Computer Graphics. Morgan Kaufmann, San Francisco (1996)Google Scholar
  22. 22.
    USGS: Shuttle radar topography mission (srtm) faq. http://seamless.usgs.gov/website/seamless/faq/srtm_faq.aspGoogle Scholar
  23. 23.
    Verdera, J., Caselles, V., Bertalmio, M., Sapiro, G.: Inpainting surface holes. Proceedings of International Conference on Image Processing (ICIP 2003) (14–17 Sept. 2003), vol. 2, pp. II–903-6 vol. 3. IEEE Computer Society, Washington, DC (2003)Google Scholar
  24. 24.
    Wecker, L.: Synthesizing Techniques Based on Multiresolution. Master’s thesis, University of Calgary, Calgary, Alberta (2007)Google Scholar
  25. 25.
    Wei, L., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 479–488. ACM Press/Addison-Wesley Publishing Co., New York (2000)Google Scholar
  26. 26.
    Zelinka, S., Garland, M.: Jump map-based interactive texture synthesis. ACM Trans. Graph. 23(4), 930–962 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lakin Wecker
    • 1
  • Faramarz Samavati
    • 1
  • Marina Gavrilova
    • 1
  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations