Advertisement

The Visual Computer

, Volume 23, Issue 7, pp 493–502 | Cite as

Optimization techniques for curved path computing

  • Adolfo Muñoz
  • Diego Gutierrez
  • Francisco J. Serón
Original Article

Abstract

Participating media with an inhomogeneous index of refraction make light follow curved paths. Simulating this in a global illumination environment has usually been neglected due to the complexity of the calculations involved, sacrificing accurate physical simulations for efficient visual results.

This paper aims to simulate non-linear media in a more reasonable time than previous works without losing physical correctness. Accuracy is achieved by solving the Eikonal equation of geometrical optics, which describes the path followed by a light beam that traverses a non-linear medium. This equation is used in the context of a photon mapping extension.

To improve the efficiency of the method, we study the existing correlation between numerical methods and the description of the non-linear medium, in terms of simulation time and error. Also, by taking advantage of several features of the scenes that include non-linear media, new optimization techniques that can be applied both for ray tracing and photon mapping will be developed. Flight or driving simulators could greatly benefit from this work.

Keywords

Non-linear media Atmospheric phenomena Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, M., Trout, T., Levit, N.: Ray tracing mirages. IEEE Comput. Graph. Appl. 10(3), 36–41 (1990)CrossRefGoogle Scholar
  2. 2.
    Burden, R.L., Faires, J.: Numerical Analysis, 4th edn. PWS-Kent, Boston (1988)Google Scholar
  3. 3.
    Dormand, J., Prince, P.: A family of embeded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco (1995)Google Scholar
  5. 5.
    Gröller, M.E.: Nonlinear raytracing: visualizing strange worlds. Vis. Comput. 11(5), 263–274 (1995)Google Scholar
  6. 6.
    Gutierrez, D., Muñoz, A., Anson, O., Serón, F.J.: Non-linear volume photon mapping. In: Rendering Techniques, pp. 291–300 (2005)Google Scholar
  7. 7.
    Gutierrez, D., Serón, F.J., Anson, O., Muñoz, A.: Chasing the green flash: a global illumination solution for inhomogeneous media. In: SCCG’04: Proceedings of the 20th Spring Conference on Computer Graphics, pp. 97–105. ACM, New York (2004)Google Scholar
  8. 8.
    Gutierrez, D., Serón, F.J., Muñoz, A., Anson, O.: Simulation of atmospheric phenomena. Comput. Graph. 30(6), 994–1010 (2006)CrossRefGoogle Scholar
  9. 9.
    Hall, R.: Illumination and color in computer generated imagery. Springer, Berlin Heidelberg New York (1989)Google Scholar
  10. 10.
    Jensen, H.: Realistic image synthesis using photon mapping. Peters, Natick, MA (2001)zbMATHGoogle Scholar
  11. 11.
    Linţu, A., Haber, J., Magnor, M.: Realistic solar disc rendering. In: V. Skala (ed.) WSCG 2005 Full Papers Conference Proceedings, pp. 79–86 (2005)Google Scholar
  12. 12.
    Muñoz, A., Gutierrez, D., Serón, F.J.: Efficient physically-based simulation of non-linear media. In: GRAPHITE ’06: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 97–105. ACM, New York (2006)Google Scholar
  13. 13.
    Musgrave, F.K.: A note on ray tracing mirages. IEEE Comput. Graph. Appl. 10(6), 10–12 (1990)CrossRefGoogle Scholar
  14. 14.
    Stam, J., Languenou, E.: Ray tracing in non-constant media. In: Proceedings of the Eurographics Workshop on Rendering Techniques ’96, pp. 225–ff. Springer, Berlin Heidelberg New York (1996)Google Scholar
  15. 15.
    Tawara, T., Myszkowski, K., Dmitriev, K., Havran, V., Damez, C., Seidel, H.P.: Exploiting temporal coherence in global illumination. In: SCCG ’04: Proceedings of the 20th Spring Conference on Computer Graphics, pp. 23–33. ACM, New York (2004)Google Scholar
  16. 16.
    USGPC: U.S. Standard Atmosphere. United State Government Printing Office, Washington, D.C. (1976)Google Scholar
  17. 17.
    Wald, I., Kollig, T., Benthin, C., Keller, A., Slusallek, P.: Interactive global illumination using fast ray tracing. In: EGRW ’02: Proceedings of the 13th Eurographics Workshop on Rendering, pp. 15–24. Eurographics Association, Aire-la-Ville, Switzerland (2002)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Adolfo Muñoz
    • 1
  • Diego Gutierrez
    • 1
  • Francisco J. Serón
    • 1
  1. 1.Grupo de Informatica Grafica Avanzada (GIGA)University of ZaragozaZaragozaSpain

Personalised recommendations