Advertisement

The Visual Computer

, Volume 23, Issue 5, pp 299–308 | Cite as

Simulation and interaction of fluid dynamics

  • Enhua Wu
  • Hongbin Zhu
  • Xuehui Liu
  • Youquan Liu
Original Article

Abstract

In the fluid simulation, the fluids and their surroundings may greatly change properties such as shape and temperature simultaneously, and different surroundings would characterize different interactions, which would change the shape and motion of the fluids in different ways. On the other hand, interactions among fluid mixtures of different kinds would generate more comprehensive behavior. To investigate the interaction behavior in physically based simulation of fluids, it is of importance to build physically correct models to represent the varying interactions between fluids and the environments, as well as interactions among the mixtures. In this paper, we will make a simple review of the interactions, and focus on those most interesting to us, and model them with various physical solutions. In particular, more detail will be given on the simulation of miscible and immiscible binary mixtures. In some of the methods, it is advantageous to be taken with the graphics processing unit (GPU) to achieve real-time computation for middle-scale simulation.

Keywords

Physically based simulation Graphics processing unit Fluid Mixture Interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. In: Proceedings of SIGGRAPH 2004, pp. 377–384 (2004)Google Scholar
  2. 2.
    Dorsey, J., Pederson, H.K., Hanrahan, P.: Flow and changes in appearance. In: Proceedings of SIGGRAPH 1996, pp. 411–420 (1996)Google Scholar
  3. 3.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: Proceedings of SIGGRAPH 2002, pp. 736–744 (2002)Google Scholar
  4. 4.
    Fan, Z., Zhao, Y., Kaufman, A., He, Y.: Adapted unstructured LBM for flow simulation on curved surfaces. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 245–254 (2005)Google Scholar
  5. 5.
    Feldman, B.E., O’Brien, J.F., Klingner, B.M.: Animating gases with hybrid meshes. ACM Trans. Graph. Proc. ACM SIGGRAPH 2005 24(3), 904–909 (2005)Google Scholar
  6. 6.
    Feldman, B.E., O’Brien, J.F., Klingner, B.M.: Fluid animation with dynamic meshes. ACM Trans. Graph. (TOG) 25(3), 820–825 (2006)CrossRefGoogle Scholar
  7. 7.
    Feldman, B.E., O’Brien, J.F., Klingner, B.M., Goktekin, T.G.: Fluids in deforming meshes. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 255–259 (2005)Google Scholar
  8. 8.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proceedings of SIGGRAPH 2001, pp. 15–22 (2001)Google Scholar
  9. 9.
    Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58(5), 471–483 (1996)CrossRefGoogle Scholar
  10. 10.
    Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. In: Proceedings of ACM SIGGRAPH 2005, pp. 973–981 (2005)Google Scholar
  11. 11.
    Hong, J.M., Kim, C.H.: Discontinuous fluids. In: Proceedings of ACM SIGGRAPH 2005, pp. 915–920 (2005)Google Scholar
  12. 12.
    Li, W., Fan, Z., Wei, X., Kaufman, A.: GPU-based flow simulation with complex boundaries. In: M. Pharr (ed.) GPU Gems 2, pp. 747–764. Addison-Wesley, Boston (2005)Google Scholar
  13. 13.
    Liu, Y.Q., Liu, X.H., Wu, E.H.: Real-time 3D fluid simulation on GPU with complex obstacles. In: Proceedings of Pacific Graphics 2004, pp. 247–256 (2004)Google Scholar
  14. 14.
    Liu, Y.Q., Liu, X.H., Zhu, H.B., Wu, E.H.: Physically based fluid simulation in computer graphics. J. Comput. Aided Des. Comput. Graph. 17(12), 2581–2589 (2005)Google Scholar
  15. 15.
    Liu, Y.Q., Zhu, H.B., Liu, X.H., Wu, E.H.: Real-time simulation of physically based on-surface flow. Vis. Comput. (Pacific Graphics 2005 issue) 21(8–10), 727–734 (2005)Google Scholar
  16. 16.
    Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. ACM Trans. Graph. (TOG) 25(3), 812–819 (2006)CrossRefGoogle Scholar
  17. 17.
    Mao, H., Yang, Y.H.: Particle-based immiscible fluid-fluid collision. In: Proceedings of the 2006 Conference on Graphics Interface, pp. 49–55 (2006)Google Scholar
  18. 18.
    Mizuno, R., Dobashi, Y., Chen, B.Y., Nishita, T.: Physics motivated modeling of volcanic clouds as a two fluids system. In: Proceedings of 11th Pacific Conference on Computer Graphics and Applications, pp. 434–439 (2003)Google Scholar
  19. 19.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of ACM SIGGRAPH 2003 Symposium on Computer Animation, pp. 154–159 (2003)Google Scholar
  20. 20.
    Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005)Google Scholar
  21. 21.
    Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., Whitaker, R.T.: Particle-based simulation of fluids. Comput. Graph. Forum 22(3), 401–410 (2003)CrossRefGoogle Scholar
  22. 22.
    Stam, J.: Stable fluids. In: Proceedings of SIGGRAPH 1999, pp. 121–128 (1999)Google Scholar
  23. 23.
    Thürey, N., Rüde, U.: Free surface lattice Boltzmann fluid simulations with and without level sets. In: Workshop on Vision, Modelling, and Visualization (VMV Stanford), pp. 199–208 (2004)Google Scholar
  24. 24.
    Wang, H., Mucha, P., Turk, G.: Water drops on surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 24(3), 921–929 (2005)CrossRefGoogle Scholar
  25. 25.
    Wei, X.M., Zhao, Y., Fan, Z., Li, W., Qiu, F., Yoakum-Stover, S., Kaufman, A.: Lattice-based flow field modeling. IEEE Trans. Visual. Comput. Graph. 10(6), 719–729 (2004)CrossRefGoogle Scholar
  26. 26.
    Wei, X.M., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., Kaufman, A.: Blowing in the wind. In: ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation, pp. 75–85 (2003)Google Scholar
  27. 27.
    Wu, E.H., Liu, Y.Q., Liu, X.H.: An improved study of real-time fluid simulation on GPU. Comput. Anim. Virt. Worlds (special issue CASA 2004) 15(3–4), 139–146 (2004)CrossRefGoogle Scholar
  28. 28.
    Zhu, H.B., Liu, X.H., Liu, Y.Q., Wu, E.H.: Simulation of miscible binary mixtures based on lattice Boltzmann method. Comput. Anim. Virt. Worlds (special issue CASA 2006) 17(3–4), 403–410 (2006)CrossRefGoogle Scholar
  29. 29.
    Zhu, H.B., Liu, X.H., Wu, E.H.: Simulation of miscible and immiscible binary mixtures based on lattice Boltzmann method. Technical Report (2006)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Enhua Wu
    • 1
    • 2
  • Hongbin Zhu
    • 2
  • Xuehui Liu
    • 2
  • Youquan Liu
    • 3
  1. 1.Department of Computer and Information Science, FSTUniversity of MacauMacauP.R. China
  2. 2.State Key Lab of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingP.R. China
  3. 3.Graduate SchoolChinese Academy of SciencesBeijingP.R. China

Personalised recommendations