Advertisement

The Visual Computer

, Volume 22, Issue 9–11, pp 721–728 | Cite as

Estimation of missing markers in human motion capture

  • Guodong Liu
  • Leonard McMillan
Special Issue Paper

Abstract

Motion capture is a prevalent technique for capturing and analyzing human articulations. A common problem encountered in motion capture is that some marker positions are often missing due to occlusions or ambiguities. Most methods for completing missing markers may quickly become ineffective and produce unsatisfactory results when a significant portion of the markers are missing for extended periods of time. We propose a data-driven, piecewise linear modeling approach to missing marker estimation that is especially beneficial in this scenario. We model motion sequences of a training set with a hierarchy of low-dimensional local linear models characterized by the principal components. For a new sequence with missing markers, we use a pre-trained classifier to identify the most appropriate local linear model for each frame and then recover the missing markers by finding the least squares solutions based on the available marker positions and the principal components of the associated model. Our experimental results demonstrate that our method is efficient in recovering the full-body motion and is robust to heterogeneous motion data.

Keywords

Missing markers Motion capture Principle component analysis Piecewise linear modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Movie 1MB

References

  1. 1.
    Barbič, J., Safonova, A., Pan, J., Faloutsos, C., Hodgins, J., Pollard, N.: Segmenting motion capture data into distinct behaviors. In: Graphics Interface 2004, pp. 185–194. Canadian Human-Computer Communications Society, London, ON, Canada (2004)Google Scholar
  2. 2.
    Bregler, C., Omohundro, S.: Nonlinear image interpolation using manifold learning. In: Advances in Neural Information Processing Systems 1995, pp. 43–50. The MIT Press, Boston, MA, USA (1995)Google Scholar
  3. 3.
    Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chai, J., Hodgins, J.: Performance animation from low-dimensional control signals. ACM Trans. Graph. 24(3), 686–696 (2005)CrossRefGoogle Scholar
  5. 5.
    Dorfmuller-Ulhaas, K.: Robust optical user motion tracking using a Kalman filter. In: 10th ACM Symposium on Virtual Reality Software and Technology, Osaka, Japan (2003)Google Scholar
  6. 6.
    Fukunaga, K., Olsen, D.: An algorithm for finding intrinsic dimensionality of data. IEEE Trans. Comput. C-20, 176–183 (1971)CrossRefGoogle Scholar
  7. 7.
    Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics. In: Proceedings of SIGGRAPH, pp. 522–531. ACM Press, New York, NY, USA (2004)CrossRefGoogle Scholar
  8. 8.
    Guo, S., Roberg, J.: A high-level mechanism for human locomotion based on parametric frame space interpolation. In: Comput. Anim. Simul., pp. 95–107. Springer, New York, NY, USA (1996)Google Scholar
  9. 9.
    Herda, L., Fua, P., Plankers, R., Boulic, R., Thalmann, D. Skeleton-based motion capture for robust reconstruction of human motion. In: Comput. Anim., pp. 77–85. IEEE Computer Society, Washington, DC, USA (2000)Google Scholar
  10. 10.
    Hinton, G., Revow, M., Dayan, P.: Recognizing handwriting digits using mixtures of linear models. Adv. Neural Inform. Process. Syst. 7, 1015–1022 (1995)Google Scholar
  11. 11.
    Hornung, A., Sar-Dessai, S.: Self-calibrating optical motion tracking for articulated bodies. In: Proceedings of the 2005 IEEE Conference on Virtual Reality, pp. 75–82 (2005)Google Scholar
  12. 12.
    Lawrence, N.D.: Gaussian process latent variable models for visualization of high dimensional data. Adv. Neural Inform. Process. Syst. 16, 329–336 (2004)MathSciNetGoogle Scholar
  13. 13.
    Liu, G., Zhang, J., Wang, W., Mcmillan, L.: Human motion estimation from a reduced marker set. In: Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics (I3D), pp. 35–42 (2006)Google Scholar
  14. 14.
    Peak Performance Inc. http://www.peakperform.comGoogle Scholar
  15. 15.
    Press, W.M., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The art of Scientific Computing. Cambridge University Press, NY (1986)Google Scholar
  16. 16.
    Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)CrossRefGoogle Scholar
  17. 17.
    Roweis, S.: EM algorithms for PCA and SPCA. In: Proceedings of Neural Information Processing Systems, vol. 10, pp. 626–632. The MIT Press, Boston, MA (1998)Google Scholar
  18. 18.
    Safonova, A., Hodgins, J., Pollard, N.P.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In: Proceedings of SIGGRAPH, pp. 514–521, ACM Press, New York, NY, USA (2004)Google Scholar
  19. 19.
    Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Statist. Soc. Series B 61(3), 611–622 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vicon Motion System Ltd, http://www.vicon.com/Google Scholar
  21. 21.
    Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K., Colucci, D.: The HiBall tracker: High-performance wide-area tracking for virtual and augmented environments. In: Symposium on Virtual Reality Software and Technology, pp. 1–10, London, UK (1999)Google Scholar
  22. 22.
    Wiley, D.J., Hahn, J.K.: Interpolation synthesis of articulated figure motion. IEEE Comput. Graph. Appl. 17(6), 39–45 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of North CarolinaChapel HillUSA

Personalised recommendations