The Visual Computer

, Volume 23, Issue 2, pp 97–108 | Cite as

A vibrotactile approach to tactile rendering

  • Dennis Allerkamp
  • Guido Böttcher
  • Franz-Erich Wolter
  • Alan C. Brady
  • Jianguo Qu
  • Ian R. Summers
Original Article


While moving our fingertip over a fine surface we experience a sensation that gives us an idea of its properties. A satisfactory simulation of this feeling is still an unsolved problem. In this paper, we describe a rendering strategy based on vibrations that play an important role in the tactile exploration of fine surfaces. To produce appropriate excitation patterns we use an array of vibrating contactor pins. Similar to the colour model in computer graphics, we simulate arbitrary vibrations as a superposition of only two sinewaves. Each sinewave is intended for the excitation of a specific population of mechanoreceptors. We carried out first tests of our rendering strategy on Brownian surfaces of different fractal dimensions.


Tactile rendering Vibrotactile perception Bistimulus theory Brownian surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann, M., Herbst, I., von Wieding, R., Wolter, F.E.: Haptical rendering of rough surfaces using their fractal dimension. In: Proceedings of the First PHANToM Users Research Symposium, pp. 9–12. German Cancer Research Center, Heidelberg, Germany (1999)Google Scholar
  2. 2.
    Bernstein, L.E., Eberhardt, S.P., Demorest, M.E.: Single-channel vibrotactile supplements to visual perception of intonation and stress. J. Acoust. Soc. Am. 85, 397–405 (1989)CrossRefGoogle Scholar
  3. 3.
    Bolanowski, S.J., Gescheider, G.A., Verillo, R.T., Checkowsky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680–1694 (1988)CrossRefGoogle Scholar
  4. 4.
    Cornsweet, T.N.: Visual Perception. Academic Press, New York (1970)Google Scholar
  5. 5.
    Falconer, K.J.: Fractal geometry: mathematical foundations and applications. Wiley, Chichester (1990)zbMATHGoogle Scholar
  6. 6.
    Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.H.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley, Reading, MA (1996)zbMATHGoogle Scholar
  7. 7.
    Gescheider, G.A., Bolanowski, S.J., Pope, J.V., Verillo, R.T.: A four-channel analysis of the tactile sensitivity on the fingertip: frequency selectivity, spatial summation, and temporal summation. Somatosens. Mot. Res. 19(2), 114–124 (2002)CrossRefGoogle Scholar
  8. 8.
    Gescheider, G.A., Bolanowski, S.J., Verrillo, R.T.: Some characteristics of tactile channels. Behav. Brain Res. 148, 35–40 (2004)CrossRefGoogle Scholar
  9. 9.
    Handley, C.: The analysis and reconstruction of repetitive textures. In: Proceedings: Computer Graphics International, pp. 273–276, IEEE (1998)Google Scholar
  10. 10.
    Hollins, M., Bensmaïa, S.J., Washburn, S.: Vibrotactile adaption impairs discrimination of fine, but not coarse, textures. Somatosens. Mot. Res. 18(4), 253–262 (2001)CrossRefGoogle Scholar
  11. 11.
    Huang, G., Metaxas, D., Govindaraj, M.: Feel the ”fabric”: an audio-haptic interface. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 52–61. Eurographics Association (2003)Google Scholar
  12. 12.
    Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001)CrossRefGoogle Scholar
  13. 13.
    Johnson, K.O., Yoshioka, T., Vega-Bermudez, F.: Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17(6), 539–558 (2000)CrossRefGoogle Scholar
  14. 14.
    Katz, D.: The World of Touch. Lawrence Erlbaum Associates, Mahwah, MJ (1989)Google Scholar
  15. 15.
    Kawabata, S.: The standardization and analysis of hand evaluation. Technical Report, The Hand Evaluation and Standardization Committee, The Textile Machinery Society of Japan (1980)Google Scholar
  16. 16.
    Rao, A.R.: A Taxonomy for Texture Description and Identification, 1st edn. Springer, Berlin Heidelberg New York (1990)zbMATHGoogle Scholar
  17. 17.
    Schulze, M.: Von computergraphischen zu haptischen Texturen. Virtual Reality für den Entwicklungsbereich Design/Styling in der Automobilindustrie. Ph.D. Thesis, Universität Hannover (2005)Google Scholar
  18. 18.
    Summers, I.R., Chanter, C.M.: A broadband tactile array on the fingertip. J. Acoust. Soc. Am. 112(5), 2118–2126 (2002)CrossRefGoogle Scholar
  19. 19.
    Summers, I.R., Chanter, C.M., Southall, A.L., Brady, A.C.: Results from a tactile array on the fingertip. In: Proceedings of Eurohaptics 2001, pp. 26–28 (2001)Google Scholar
  20. 20.
    Summers, I.R., Whybrow, J.J., Milnes, P., Brown, B.H., Stevens, J.C.: Tactile perception: comparison of two stimulation sites. J. Acoust. Soc. Am. 118(4), 2527–2534 (2005)CrossRefGoogle Scholar
  21. 21.
    Tsai, P.S., Shah, M.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)CrossRefGoogle Scholar
  22. 22.
    Verrillo, R.T., Fraioli, A.J., Smith, R.L.: Sensation magnitude of vibrotactile stimuli. Percept. Psychophys. 33, 379–387 (1969)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dennis Allerkamp
    • 1
  • Guido Böttcher
    • 1
  • Franz-Erich Wolter
    • 1
  • Alan C. Brady
    • 2
  • Jianguo Qu
    • 2
  • Ian R. Summers
    • 2
  1. 1.Welfenlab, Division of Computer GraphicsUniversity of HannoverHannoverGermany
  2. 2.Biomedical Physics Group, School of PhysicsUniversity of ExeterExeterUK

Personalised recommendations