Advertisement

The Visual Computer

, Volume 22, Issue 8, pp 550–561 | Cite as

Spectral volume rendering using GPU-based raycasting

  • Magnus StrengertEmail author
  • Thomas Klein
  • Ralf Botchen
  • Simon Stegmaier
  • Min Chen
  • Thomas Ertl
Original Article

Abstract

Traditional volume rendering does not incorporate a number of optical properties that are typically observed for semi-transparent materials, such as glass or water, in the real world. Therefore, we have extended GPU-based raycasting to spectral volume rendering based on the Kubelka–Munk theory for light propagation in parallel colorant layers of a turbid medium. This allows us to demonstrate the effects of selective absorption and dispersion in refractive materials, by generating volume renderings using real physical optical properties. We show that this extended volume rendering technique can be easily incorporated into a flexible framework for GPU-based volume raycasting. Our implementation shows a promising performance for a number of real data sets. In particular, we obtain up to 100 times the performance of a comparable CPU implementation.

Keywords

GPU-Raycasting Spectral Volume Rendering Kubelka-Munk Theory  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Abdul-Rahman, A., Chen, M.: Spectral Volume Rendering Based on the Kubelka-Munk Theory. Comput. Graph. Forum 24(3), 413–422 (2005)CrossRefGoogle Scholar
  2. 2.
    Baxter, W., Wendt, J., Lin, M.C.: IMPaSTo: A Realistic, Interactive Model for Paint. In: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering, pp. 45–148 (2004)Google Scholar
  3. 3.
    Bergner, S., Möller, T., Drew, M.S., Finlayson, G.D.: Interactive spectral volume rendering. In: Proceedings of IEEE Visualization, pp. 101–108 (2002)Google Scholar
  4. 4.
    Bergner, S., Möller, T., Tory, M., Drew, M.: A Practical Approach to Spectral Volume Rendering. IEEE Trans. Vis. Comput. Graph. 11(2), 207–216 (2005)CrossRefGoogle Scholar
  5. 5.
    Boada, I., Navazo, I., Scopigno, R.: Multiresolution Volume Visualization with a Texture-based Octree. Visual Comput. 17(3), 185–197 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cabral, B., Cam, N., Foran, J.: Accelerated Volume Rendering and Tomographic Reconstruction using Texture Mapping Hardware. In: Proceedings of the 1994 Symposium on Volume Visualization, pp. 91–98 (1994)Google Scholar
  7. 7.
    Cullip, T.J., Neumann, U.: Accelerating Volume Reconstruction With 3D Texture Hardware. Tech. Rep. TR93-027, University of North Carolina at Chapel Hill (1993)Google Scholar
  8. 8.
    Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.H.: Computer-generated Watercolor. In: Proceedings of the 24th Annual ACM SIGGRAPH Conference, pp. 421–430 (1997)Google Scholar
  9. 9.
    Dorsey, J., Hanrahan, P.: Modeling and Rendering of Metallic Patinas. In: Proceedings of the 23rd Annual ACM SIGGRAPH Conference, pp. 387–396 (1996)Google Scholar
  10. 10.
    Engel, K., Kraus, M., Ertl, T.: High-Quality Pre-Integrated Volume Rendering Using Hardware-Accelerated Pixel Shading. In: Eurographics / SIGGRAPH Workshop on Graphics Hardware ’01, pp. 9–16 (2001)Google Scholar
  11. 11.
    Glassner, A.S.: How to Derive a Spectrum from an RGB Triplet. IEEE Computer Graphics and Applications pp. 95–99 (1989)Google Scholar
  12. 12.
    Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco (1995)Google Scholar
  13. 13.
    Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive Rendering of Large Volume Data Sets. In: Proceedings of IEEE Visualization ’02, pp. 53–60. IEEE Computer Society (2002)Google Scholar
  14. 14.
    Haase, C., Meyer, G.: Modeling Pigmented Materials for Realistic Image Synthesis. ACM Trans. Graph. 11(4), 305–335 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K., Gross, M.: Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces. In: Proceedings of Eurographics ’05, pp. 303–312 (2005)Google Scholar
  16. 16.
    Hall, R.: Illumination and Color in Computer Generated Imagery. Springer-Verlag (1989)Google Scholar
  17. 17.
    Hall, R.A., Greenburg, D.P.: A Testbed for Realistic Image Synthesis. IEEE Comput. Graph. Appl. 3(8), 10–20 (1983)CrossRefGoogle Scholar
  18. 18.
    Johnson, G.M., Fairchild, M.D.: Full-Spectral Color Calculations in Realistic Image Synthesis. IEEE Comput. Graph. Appl. 19(4), 47–53 (1999)CrossRefGoogle Scholar
  19. 19.
    Klein, T., Strengert, M., Stegmaier, S., Ertl, T.: Exploiting Frame-to-Frame Coherence for Accelerating High-Quality Volume Raycasting on Graphics Hardware. In: Proceedings of IEEE Visualization ’05, pp. 223–230. IEEE (2005)Google Scholar
  20. 20.
    Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional Transfer Functions for Interactive Volume Rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002)CrossRefGoogle Scholar
  21. 21.
    Kniss, J., Premoze, S., Hansen, C., Ebert, D.: Interactive Translucent Volume Rendering and Procedural Modeling. In: Proceedings of IEEE Visualization ’02, pp. 109–116 (2002)Google Scholar
  22. 22.
    Krüger, J., Westermann, R.: Acceleration Techniques for GPU-based Volume Rendering. In: Proceedings of IEEE Visualization ’03, pp. 287–292 (2003)Google Scholar
  23. 23.
    Kubelka, P.: New contributions to the optics of intensely light-scattering materials, Part II. Nonhomogeneous layers. J. Optical Soc. Am. 44, 330–355 (1954)CrossRefGoogle Scholar
  24. 24.
    Kubelka, P., Munk, F.: Ein Beitrag zur Optik der Farbanstriche. Z. Technische Physik 12, 593–601 (1931)Google Scholar
  25. 25.
    LaMar, E., Hamann, B., Joy, K.I.: Multiresolution Techniques for interactive Texture-based Volume Visualization. In: Proceedings of IEEE Visualization ’99, pp. 355–361 (1999)Google Scholar
  26. 26.
    Li, W., Mueller, K., Kaufman, A.: Empty Space Skipping and Occlusion Clipping for Texture-based Volume Rendering. In: Proceedings of IEEE Visualization ’03, pp. 317–324 (2003)Google Scholar
  27. 27.
    Max, N.: Optical Models for Direct Volume Rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)CrossRefGoogle Scholar
  28. 28.
    Meyer, G.W.: Wavelength Selection for Synthetic Image Generation. Comput. Vision, Graph. Image Process. 41, 57–79 (1988)CrossRefGoogle Scholar
  29. 29.
    Noordmans, H., van der Voort, H., Smeulders, A.: Spectral Volume Rendering. IEEE Trans. Vis. Comput. Graph. 6(3), 196–207 (2000)CrossRefGoogle Scholar
  30. 30.
    NVIDIA Corporation: NVIDIA SDK 8.0. http://developer.nvidia.com/object/sdk_home.html (2004)Google Scholar
  31. 31.
    Peercy, M.S.: Linear Color Representations for Full Spectral Rendering. ACM SIGGRAPH Comput. Graph. 27(3), 191–198 (1993)Google Scholar
  32. 32.
    Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.: Interactive Volume Rendering on Standard PC Graphics Hardware using Multi-textures and Multi-stage Rasterization. In: Proceedings of the ACM SIGGRAPH/ EUROGRAPHICS Workshop on Graphics Hardware, pp. 109–118 (2000)Google Scholar
  33. 33.
    Rodgman, D., Chen, M.: Refraction in Discrete Raytracing. In: Proceedings of Volume Graphics 2001, pp. 3–17. Springer, New York (2001)Google Scholar
  34. 34.
    Rodgman, D., Chen, M.: On Volume Denoising Filters for Visualizing Refraction. In: Proceedings of Vision, Modeling, and Visualization ’03, pp. 355–363 (2003)Google Scholar
  35. 35.
    Röttger, S., Guthe, S., Weiskopf, D., Ertl, T.: Smart Hardware-Accelerated Volume Rendering. In: Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym ’03, pp. 231–238 (2003)Google Scholar
  36. 36.
    Rougeron, G., Péroche, B.: Color Fidelity in Computer Graphics: A Survey. Comput. Graph. Forum 17(1), 3–15 (1998)CrossRefGoogle Scholar
  37. 37.
    Rudolf, D., Mould, D., Neufeld, E.: Simulating Wax Crayons. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, pp. 163–172 (2003)Google Scholar
  38. 38.
    Schlick, C.: A Survey of Shading and Reflectance Models. Comput. Graph. Forum 13(2), 121–131 (1994)CrossRefGoogle Scholar
  39. 39.
    Schuster, A.: Radiation Through a Foggy Atmosphere. J. Astrophysics 21, 1–22 (1905)CrossRefGoogle Scholar
  40. 40.
    Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting. In: Proceedings of the International Workshop on Volume Graphics ’05, pp. 187–195 (2005)Google Scholar
  41. 41.
    Weiler, M., Kraus, M., Merz, M., Ertl, T.: Hardware-Based Ray Casting for Tetrahedral Meshes. In: Proceedings of IEEE Visualization ’03, pp. 333–340 (2003)Google Scholar
  42. 42.
    Westermann, R., Ertl, T.: Efficiently using Graphics Hardware in Volume Rendering Applications. In: SIGGRAPH ’98: Proceedings of the 25th annual Conference on Computer Graphics and interactive Techniques, pp. 169–177 (1998)Google Scholar
  43. 43.
    Wyszecki, G., Stiles, W.S.: Color Science Concepts and Methods, Quantitative Data and Formulae. Wiley-Interscience Publication (1982)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Magnus Strengert
    • 1
    Email author
  • Thomas Klein
    • 1
  • Ralf Botchen
    • 1
  • Simon Stegmaier
    • 1
  • Min Chen
    • 2
  • Thomas Ertl
    • 1
  1. 1.VIS GroupUniversity of StuttgartStuttgartGermany
  2. 2.Department of Computer ScienceUniversity of Wales SwanseaSwanseaUnited Kingdom

Personalised recommendations