The Visual Computer

, Volume 22, Issue 1, pp 56–67 | Cite as

An efficient and low-error mesh simplification method based on torsion detection

original article

Abstract

To preserve the major characteristics of the simplified model, this study proposes the use of torsion detection to improve the quadric error metric of vertex-pair contraction, and retain the physical features of the models. Besides keeping the physical features of the models, the proposed method also decreases the preprocessing time cost associated with analysis. To verify the conclusion, this research not only presents the effects of simplification and compares them with the vertex-pair contraction, but also employs Metro detection and image comparison to verify the error measurements. The experimental results demonstrate that the proposed method improves the error rate and keeps the precision of the object features efficiently.

Keywords

Mesh simplification Quadric error metric Torsion detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernd, H.: A data reduction scheme for triangulated surfaces. Comput Aided Geom Des 11(2):197–214. DOI 10.1016/0167-8396(94)90032-9 (1994)Google Scholar
  2. 2.
    Chen, B.Y., Nishita, T.: An efficient mesh simplification method with feature detection for unstructured meshes and web graphics. In: Proceedings of IEEE Computer Graphics International 2003, Tokyo, Japan, July 2003, pp 34–41. DOI 10.1109/CGI.2003.1214445 (2003)Google Scholar
  3. 3.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput Graph Forum 17(2):167–174. DOI 10.1111/1467-8659.00236 (1998)Google Scholar
  4. 4.
    Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH 97, Los Angeles, August 1997, pp. 209–216. DOI 10.1145/258734.258849 (1997)Google Scholar
  5. 5.
    Garland, M.: Quadric-Based Polygonal Surface Simplification. Ph.D. Dissertation, Computer Science Department, Carnegie Mellon University, CMU-CS-99-105, May 1999 (1999)Google Scholar
  6. 6.
    Garland, M., Willmott, A., Heckbert, P.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of ACM Symposium on Interactive 3D Graphics, March 2001, pp. 49–58. DOI 10.1145/364338.364345 (2001)Google Scholar
  7. 7.
    Garland, M., Shaffer, E.: A multiphase approach to efficient surface simplification. In: Proceedings of The Conference on Visualization’02. Boston, Massachusetts, October 2002, pp. 117–124 (2002)Google Scholar
  8. 8.
    Gieng, T., Hamann, B., Joy, K., Schussman, G., Trotts, I.: Constructing hierarchies for triangle meshes. IEEE Trans Visual Comput Graph 4(2):145–161. DOI 10.1109/2945.694956 (1998)Google Scholar
  9. 9.
    Guéziec, A.: Surface simplification with variable tolerance. In: Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Baltimore, MD, November 1995, pp. 132–139 (1995)Google Scholar
  10. 10.
    Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, August 1996, pp. 99–108. DOI 10.1145/237170.237216 (1996)Google Scholar
  11. 11.
    Kho, Y., Garland, M.: User-guided simplification. In: Proceedings of ACM Symposium on Interactive 3D Graphics, Monterey, California, USA, April 2003, pp. 123–126. DOI 10.1145/641480.641504 (2003)Google Scholar
  12. 12.
    Lindstrom, P.: Out-of-core simplification of large polygonal models. In: Proceedings of ACM SIGGRAPH 2000, New Orleans, July 2000, pp. 259–262. DOI 10.1145/344779.344912 (2000)Google Scholar
  13. 13.
    Lindstrom, P., Turk, G.: Image-driven simplification. ACM Trans Graph 19(3):204–241. DOI 10.1145/353981.353995 (2000)Google Scholar
  14. 14.
    Liu YJ, Yuen MMF, Tang K (2003) Manifold-guaranteed out-of-core simplification of large meshes with controlled topological type. Visual Computer 19(8):565–580. DOI 10.1007/s00371-003-0222-2Google Scholar
  15. 15.
    Lodha, S.K., Roskin, K.M., Renteria, J.C.: Hierarchical topology preserving simplification of terrains. Visual Computer 19(8):493–504. DOI 10.1007/s00371-003-0214-2 (2003)Google Scholar
  16. 16.
    Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., Huebner, R.: Level of detail for 3D graphics. Morgan Kaufmann (2003)Google Scholar
  17. 17.
    Rossignac, J., Borrel, P.: Multi-resolution 3D approximations for rendering complex scenes. In: Geometric Modeling in Computer Graphics, pp. 455–465. Springer, Berlin Heidelberg New York (1993)Google Scholar
  18. 18.
    Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. ACM SIGGRAPH Computer Graphics 26(2):65–70. DOI 10.1145/142920.134010 (1992)Google Scholar
  19. 19.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc., Houston (1999)Google Scholar
  20. 20.
    Yan, J., Shi, P., Zhang, D.: Mesh simplification with hierarchical shape analysis and iterative edge contraction. IEEE Trans Visual Comput Graph 10(2):142–151. DOI 10.1109/TVCG.2004.1260766 (2004)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Bin-Shyan Jong
    • 1
  • Juin-Ling Tseng
    • 2
    • 3
  • Wen-Hao Yang
    • 2
    • 4
  1. 1.Department of Information and Computer EngineeringChung Yuan Christian UniversityPu-chung LiTaiwan
  2. 2.Department of Electronic EngineeringChung Yuan Christian UniversityPu-chung LiTaiwan
  3. 3.Department of Management Information SystemChin Min Institute of TechnologyTou-FenTaiwan
  4. 4.Department of Electronic EngineeringChin Min Institute of TechnologyTou-FenTaiwan

Personalised recommendations