The Visual Computer

, Volume 21, Issue 8–10, pp 506–519 | Cite as

From early draping to haute couture models: 20 years of research

  • Nadia Magnenat-ThalmannEmail author
  • Pascal Volino
Invited Paper


Simulating the complex fashion garments of haute couture can only be reached through an optimal combination of modeling techniques and numerical methods that combines high computation efficiency with the versatility required for simulating intricate garment designs. Here we describe optimal choices illustrated by their integration into a design and simulation tool that allow interactive prototyping of garments along drape motion and comfortability tests on animated postures. These techniques have been successfully used to bring haute couture garments from early draping of fashion designers, to be simulated and visualized in the virtual world.


Cloth simulation Virtual garments Fashion design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. Comput. Graph. (Proceedings of SIGGRAPH’98), 32, 106–117 (1998)Google Scholar
  2. 2.
    Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: Comput. Graph. (Proceedings of SIGGRAPH’94), 32(4), 365–372 (1994)Google Scholar
  3. 3.
    Carignan, M., Yang, Y., Magnenat-Thalmann, N., Thalmann, D.: Dressing animated synthetic actors with complex deformable clothes. Comput. Graph. (Proceedings of SIGGRAPH’92), 26(2), 99–104 (1992)Google Scholar
  4. 4.
    Choi, K.J., Ko, H.S.: Stable but responsive cloth. Comput. Graph. (Proceedings of SIGGRAPH’02), 21(3), 604–611 (2002)Google Scholar
  5. 5.
    Collier, J.R., Collier, B.J., O’Toole, G., Sargand, S.M.: Drape prediction by means of finite-element analysis. J. Textile Inst. 82(1), 96–107 (1991)Google Scholar
  6. 6.
    Derose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. Comput. Graph. (Proceedings of SIGGRAPH’98), 32, 148–157 (1998)Google Scholar
  7. 7.
    Desbrun, M., Schröder, P., Barr, A.: Interactive animation of structured deformable objects. In: Proceedings of Graphics Interface, AK Peters, Warriewood, NSW, Australia (1999)Google Scholar
  8. 8.
    Eberhardt, B., Weber, A., Strasser, W.: A fast, flexible, particle-system model for cloth draping. In: Computer Graphics in Textiles and Apparel (IEEE Computer Graphics and Applications), IEEE Press, pp. 52–59 (1996)Google Scholar
  9. 9.
    Eberhardt, B., Etzmuss, O., Hauth, M.: Implicit-explicit schemes for fast animation with particles systems. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation. Springer, Berlin Heidelberg New York, pp. 137–151 (2000)Google Scholar
  10. 10.
    Eischen, J.W., Deng, S., Clapp, T.G.: Finite-element modeling and control of flexible fabric parts. In: Computer Graphics in Textiles and Apparel (IEEE Computer Graphics and Applications), IEEE Press, pp. 71–80, (1996)Google Scholar
  11. 11.
    Gan, L. et al.: A study of fabric deformation using non-linear finite elements. Textile Res. J. 65(11), 660–668 (1995)Google Scholar
  12. 12.
    Hauth, M., Etzmuss, O.: A high performance solver for the animation of deformable objects using advanced numerical methods. In: Proceedings of Eurographics (2001)Google Scholar
  13. 13.
    Kang, Y.M., Choi, J.H., Cho, H.G., Lee, D.H., Park, C.J.: Real-time animation technique for flexible and thin objects. In: Proceedings of WSCG, pp. 322–329 (2000)Google Scholar
  14. 14.
    Lafleur, B., Magnenat-Thalmann, N., Thalmann, D.: Cloth animation with self-collision detection. In: Proceedings of the IFIP Conference on Modeling in Computer Graphics, pp. 179–197 (1991)Google Scholar
  15. 15.
    Metzger, J., Kimmerle, S., Etzmuss, O.: Hierarchical techniques in collision detection for cloth animation. J. WSCG 11(2), 322–329 (2003)Google Scholar
  16. 16.
    Oh, S., Kim, H., Magnenat-Thalmann, N., Wohn, K.: Generating unified model for dressed virtual humans. In: Pacific Graphics (2005) (in press)Google Scholar
  17. 17.
    Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P.: Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge, UK (1992)Google Scholar
  18. 18.
    Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Proceedings of Graphics Interface’95, pp. 147–154. AK Peters, Warriewood, NSW, Australia (1995)Google Scholar
  19. 19.
    Sakagushi, Y., Minoh, M., Ikeda, K.: A dynamically deformable model of dress. Trans. Soc. Electron. Inf. Commun. 54, 25–32 (1991)Google Scholar
  20. 20.
    Terzopoulos, D., Platt, J.C., Barr, H.: Elastically deformable models. Comput. Graph. (Proceedings of SIGGRAPH’97), 21, 205–214 (1987)Google Scholar
  21. 21.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Comput. Graph. (Proceedings of SIGGRAPH’88), 22, 269–278 (1988)Google Scholar
  22. 22.
    Volino, P., Courchesne, M., Magnenat-Thalmann, N.: Versatile and efficient techniques for simulating cloth and other deformable objects. Comput. Graph. (Proceedings of SIGGRAPH’95), 29(4), 137–144 (1995)Google Scholar
  23. 23.
    Volino, P., Magnenat-Thalmann, N.: Developing simulation techniques for an interactive clothing system. In: Proceedings of Virtual Systems and Multimedia (VSMM’97). IEEE Press, Geneva, pp. 109–118 (1997)Google Scholar
  24. 24.
    Volino, P., Magnenat-Thalmann, N.: Implementing fast cloth simulation with collision response. In: Proceedings of Computer Graphics International, pp. 257–266. IEEE Press, New York (2000)Google Scholar
  25. 25.
    Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth simulation. In: Proceedings of Computer Graphics International. IEEE Press, New York (2001)Google Scholar
  26. 26.
    Volino, P., Magnenat-Thalmann, N.: Accurate garment prototyping and simulation. Comput.-Aided Des. Appl. 2(5), 645–654 (2005)Google Scholar
  27. 27.
    Volino, P., Cordier, F., Magnenat-Thalmann, N.: From early virtual garment simulation to interactive fashion design. Comput.-Aided Des. 37, 793–608 (2005)Google Scholar
  28. 28.
    Weil, J.: The synthesis of cloth objects. Comput. Graph. (Proceedings of SIGGRAPH’86), 20, 49–54 (1986)Google Scholar
  29. 29.
    Yang, Y., Magnenat-Thalmann, Y.: An improved algorithm for collision detection in cloth animation with human body. Comput. Graph. Appl. (Proceedings of Pacific Graphics’93), 1, 237–251 (1993)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.MIRALabUniversity of GenevaSwitzerland

Personalised recommendations