The Visual Computer

, Volume 21, Issue 8–10, pp 649–658 | Cite as

Mesh segmentation using feature point and core extraction

  • Sagi Katz
  • George Leifman
  • Ayellet Tal
original article


Mesh segmentation has become a necessary ingredient in many applications in computer graphics. This paper proposes a novel hierarchical mesh segmentation algorithm, which is based on new methods for prominent feature point and core extraction. The algorithm has several benefits. First, it is invariant both to the pose of the model and to different proportions between the model’s components. Second, it produces correct hierarchical segmentations of meshes, both in the coarse levels of the hierarchy and in the fine levels, where tiny segments are extracted. Finally, the boundaries between the segments go along the natural seams of the models.


Mesh segmentation Mesh decomposition Feature point extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexa, M.: Merging polyhedral shapes with scattered features. Visual Comput. 16, 26–37 (2000)Google Scholar
  2. 2.
    Barlow, R., Bartholomew, D., Bremner, J., Brunk, H.: Statistical Inference Under Order Restrictions. Wiley, New York (1972)Google Scholar
  3. 3.
    Borg, I., Groenen, P.: Modern Multi-dimensional Scaling: Theory and Applications. Springer, Berlin Heidelberg New York (1977)Google Scholar
  4. 4.
    Chazelle, B., Dobkin, D., Shourhura, N., Tal, A.: Strategies for polyhedral surface decomposition: an experimental study. Comput. Geom. Theory Appl. 7(4–5), 327–342 (1997)Google Scholar
  5. 5.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. (SIGGRAPH) 23(3), 905–914 (2004)Google Scholar
  6. 6.
    Cox, M., Cox, T.: Multidimensional Scaling. Chapman and Hall, London (1994)Google Scholar
  7. 7.
    Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)Google Scholar
  8. 8.
    Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph. (SIGGRAPH) 23(3), 652–663 (2004)Google Scholar
  9. 9.
    Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH 1997, pp. 209–216 (1997)Google Scholar
  10. 10.
    Garland, M., Willmott, A., Heckbert, P.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of ACM Symposium on Interactive 3D Graphics, pp. 49–58 (2001)Google Scholar
  11. 11.
    Gregory, A., State, A., Lin, M., Manocha, D., Livingston, M.: Interactive surface decomposition for polyhedral morphing. Visual Comput. 15, 453–470 (1999)Google Scholar
  12. 12.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH 2001, pp. 203–212 (2001)Google Scholar
  13. 13.
    Hoffman, D., Richards, W.: Parts of recognition. In: Pinker, S. (ed.) Visual Cognition, pp. 65–96. MIT Press, London (1985)Google Scholar
  14. 14.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of SIGGRAPH 2000, pp. 279–286 (2000)Google Scholar
  15. 15.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. (SIGGRAPH) 22(3), 954–961 (2003)Google Scholar
  16. 16.
    Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23(3), 861–869 (2004)Google Scholar
  17. 17.
    Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: constructing constrained texture maps. ACM Trans. Graph. 22(3), 326–333 (2003)Google Scholar
  18. 18.
    Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika 29 (1964)Google Scholar
  19. 19.
    Kruskal, J., Wish, M.: Multidimensional Scaling. SAGE Publications, Thousand Oaks, CA (1978)Google Scholar
  20. 20.
    Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Intelligent mesh scissoring using 3D snakes. In: Pacific Conference on Computer Graphics and Applications, pp. 279–287 (2004)Google Scholar
  21. 21.
    Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Proceedings of SIGGRAPH 2002, pp. 362–371 (2002)Google Scholar
  22. 22.
    Li, X., Toon, T., Tan, T., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Proceedings of the 2001 symposium on Interactive 3D graphics, pp. 35–42 (2001)Google Scholar
  23. 23.
    Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Pacific Conference on Computer Graphics and Applications, pp. 298–305 (2004)Google Scholar
  24. 24.
    Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Visual. Comput. Graph. 5(4), 308–321 (1999)Google Scholar
  25. 25.
    Praun, E., Sweldens, W., Schröder, P.: Consistent mesh parameterizations. In: SIGGRAPH ’01, pp. 179–184. ACM Press, New York (2001)Google Scholar
  26. 26.
    Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH ’01, pp. 409–416. ACM Press, New York (2001)Google Scholar
  27. 27.
    Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)Google Scholar
  28. 28.
    Sethian, J., Kimmel, R.: Computing geodesic paths on manifolds. Proc. of Natl. Acad. Sci. 95(15), 8431–8435 (1998)Google Scholar
  29. 29.
    Shamir, A.: A formalization of boundary mesh segmentation. In: Proceedings of the 2nd International Symposium on 3DPVT (2004)Google Scholar
  30. 30.
    Shepard, R.: The analysis of proximities: multi-dimensional scaling with an unknown distance function. Psychometrika 27 (1962)Google Scholar
  31. 31.
    Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. In: Proceedings of Eurographics, pp. 219–228 (2002)Google Scholar
  32. 32.
    Sumner, R., Popovic, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)Google Scholar
  33. 33.
    Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24(1), 1–27 (2005)Google Scholar
  34. 34.
    Zhou, K., Synder, J., Guo, B., Shum, H.Y.: Iso-charts: Stretch-driven mesh parameterization using spectral analysis. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 45–54 (2004)Google Scholar
  35. 35.
    Zhou, Y., Huang, Z.: Decomposing polygon meshes by means of critical points. In: MMM, pp. 187–195 (2004)Google Scholar
  36. 36.
    Zockler, M., Stalling, D., Hege, H.C.: Fast and intuitive generation of geometric shape transitions. Visual Comput. 16(5), 241–253 (2000)Google Scholar
  37. 37.
    Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 26(5), 733–743 (2002)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Electrical EngineeringTechnion – Israel Institute of TechnologyIsrael

Personalised recommendations