The Visual Computer

, Volume 21, Issue 8–10, pp 679–688 | Cite as

Topology-preserving simplification of 2D nonmanifold meshes with embedded structures

  • Fabien Vivodtzev
  • Georges-Pierre Bonneau
  • Paul Le Texier
original article


Mesh simplification has received tremendous attention over the years. Most of the previous work in this area deals with a proper choice of error measures to guide the simplification. Preserving the topological characteristics of the mesh and possibly of data attached to the mesh is a more recent topic and the subject of this paper. We introduce a new topology-preserving simplification algorithm for triangular meshes, possibly nonmanifold, with embedded polylines. In this context, embedded means that the edges of the polylines are also edges of the mesh. The paper introduces a robust test to detect if the collapse of an edge in the mesh modifies either the topology of the mesh or the topology of the embedded polylines. This validity test is derived using combinatorial topology results. More precisely, we define a so-called extended complex from the input mesh and the embedded polylines. We show that if an edge collapse of the mesh preserves the topology of this extended complex, then it also preserves both the topology of the mesh and the embedded polylines. Our validity test can be used for any 2-complex mesh, including nonmanifold triangular meshes, and can be combined with any previously introduced error measure. Implementation of this validity test is described. We demonstrate the power and versatility of our method with scientific data sets from neuroscience, geology, and CAD/CAM models from mechanical engineering.


Computational geometry and its applications LOD techniques Multiresolution curves and surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajaj, C., Schikore, D.: Error-bounded reduction of triangle meshes with multivariate data. SPIE 2656, 34–45 (1996)Google Scholar
  2. 2.
    Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Comput. Graph. 22(1), 37–54 (1998)Google Scholar
  3. 3.
    Cignoni, P., Montani, C., Scopigno, R., Rocchini, C.: A general method for preserving attribute values on simplified meshes. In: IEEE Visualization, pp. 59–66 (1998)Google Scholar
  4. 4.
    Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. Comput. Graph. 32, 115–122 (1998)Google Scholar
  5. 5.
    Dey, T., Edelsbrunner, H., Guha, S., Nekhayev, D.: Topology preserving edge contraction. Technical Report RGI-Tech-98-018, Raindrop Geomagic, Research Triangle Park, NC (1998)Google Scholar
  6. 6.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)Google Scholar
  7. 7.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Comput. Graph. 29, 173–182 (1995)Google Scholar
  8. 8.
    Erikson, C., Manocha, D.: GAPS: general and automatic polygonal simplification. In: Symposium on Interactive 3D Graphics, pp. 79–88 (1999)Google Scholar
  9. 9.
    Floriani, L.D., Marzano, P., Puppo, E.: Multiresolution models for topographic surface description. Visual Comput. 12(7), 317–345 (1996)Google Scholar
  10. 10.
    Garland, M.: Multiresolution modeling: survey and future opportunities. In: Eurographics ’99 – State of the Art Reports, pp. 111–131 (1999)Google Scholar
  11. 11.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. Comput. Graph. 31, 209–216 (1997)Google Scholar
  12. 12.
    Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Ebert, D., Hagen, H., Rushmeier, H. (eds.) IEEE Visualization, pp 263–270 (1998)Google Scholar
  13. 13.
    Gerstner, T., Pajarola, R.: Topology preserving and controlled topology simplifying multiresolution isosurface extraction. In: Proceedings of the Conference on Visualization, pp. 259–266. IEEE Press, New York (2000)Google Scholar
  14. 14.
    Gregorski, B.F., Sigeti, D.E., Ambrosiano, J.J., Graham, G., Wolinsky, M., Duchaineau, M.A., Hamann, B., Joy, K.I.: Multiresolution Representation of Datasets with Material Interfaces, pp. 99–117. Springer, Berlin Heidelberg New York (2003)Google Scholar
  15. 15.
    Gross, M.H., Staadt, O.G., Gatti, R.: Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Trans. Vis. Comput. Graph. 2(2), 130–143 (1996)Google Scholar
  16. 16.
    Guéziec, A.: Surface simplification inside a tolerance volume. Technical Report RC 20440, IBM Research (1996)Google Scholar
  17. 17.
    Haemer, M.D., Zyda, M.: Simplification of objects rendered by polygonal approximations. Comput. Graph. 15(2), 175–184 (1991)Google Scholar
  18. 18.
    Hoppe, H.: Progressive meshes. Comput. Graph. 30, 99–108 (1996)Google Scholar
  19. 19.
    Hoppe, H.: Efficient implementation of progressive meshes. Comput. Graph. 22(1), 27–36 (1998)Google Scholar
  20. 20.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of SIGGRAPH, pp. 19–26 (1993)Google Scholar
  21. 21.
    Hubeli, A., Gross, M.: Multiresolution feature extraction for unstructured meshes. In: Proceedings of IEEE Visualization, pp. 287–294. IEEE Press, New York (2001)Google Scholar
  22. 22.
    Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: Proceedings IEEE Visualization, pp. 279–286 (1998)Google Scholar
  23. 23.
    Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Elsevier, Amsterdam (2002)Google Scholar
  24. 24.
    Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)Google Scholar
  25. 25.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)Google Scholar
  26. 26.
    Popovic, J., Hoppe, H.: Progressive simplicial complexes. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics And Interactive Techniques, pp. 217–224. New York (1997)Google Scholar
  27. 27.
    Ronfard, R., Rossignac, J.: Full-range approximation of triangulated polyhedra. In: Proceedings of Eurographics 1996, Comput. Graph. Forum 15(3), 67–76 (1996)Google Scholar
  28. 28.
    Rossignac, J., Borrel, P.: Multi-resolution 3d approximation for rendering complex scenes. In: Geometric Modeling Computer Graphics, ed. by Falcidieno, B., Kunii, T.L., pp. 455–465. Springer, New York (1993)Google Scholar
  29. 29.
    Rossl, C., Kobbelt, L., Seidel, H.P.: Extraction of feature lines on triangulated surfaces using morphological operators. In: Proceedings of the AAAI Symposium on Smart Graphics, pp. 71–75 (2000)Google Scholar
  30. 30.
    Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. Comput. Graph. 26(2), 65–70 (1992)Google Scholar
  31. 31.
    Turk, G.: Re-tiling polygonal surfaces. Comput. Graph. 26(2), 55–64 (1992)Google Scholar
  32. 32.
    Wu, Y., He, Y., Cai, H.: QEM-based mesh simplification with global geometry features preserved. In: GRAPHITE ’04: Proceedings of the International Conference on Computer Graphics and Interactive Techniques in Australia and South East Asia, Singapore, pp. 50–57. ACM Press, New York, NY, USA (2004)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Fabien Vivodtzev
    • 1
    • 2
  • Georges-Pierre Bonneau
    • 1
  • Paul Le Texier
    • 2
  1. 1.Laboratoire GRAVIR (UJF, CNRS, INP Grenoble, INRIA)INRIA Rhone-AlpesSaint Ismier CedexFrance
  2. 2.CEA/CESTA (French Atomic Energy Commission)Le Barp CedexFrance

Personalised recommendations