Advertisement

The Visual Computer

, Volume 21, Issue 8–10, pp 745–754 | Cite as

Volume cutout

  • Xiaoru Yuan
  • Nan Zhang
  • Minh X. Nguyen
  • Baoquan Chen
original article

Abstract

We present a novel method for cutting out 3D volumetric structures based on simple strokes that are drawn directly on volume rendered images. The freehand strokes roughly mark out objects of interest and background. Our system then automatically segments the regions of interest and refines their boundaries in the rendered image. These 2D segmentation results provide constraints for 3D segmentation in the volume dataset. The objects of interest are then efficiently cut out from the volume via a combination of our novel two-pass graph cuts algorithm and the pre-computed over-segmentation. Our method improves traditional, fully automatic segmentation by involving human users in the process, yet minimizing user input and providing timely feedback. Our experiments show that our method extracts volumetric structures precisely and efficiently while requiring little skill or effort from the user.

Keywords

Segmentation Volume editing Visualization Volume rendering Interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M.: Keyframe-based tracking for rotoscoping and animation. ACM Trans. Graph. 23(3), 584–591 (2004)Google Scholar
  2. 2.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: International Conference on Computer Vision (ICCV ’01), vol. I, pp. 105–112 (2001)Google Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Machine Interll. 26(9), 1124–1137 (2004)Google Scholar
  4. 4.
    Fairfield, J.: Toboggan contrast enhancement for contrast segmentation. In: 10th IEEE International Conference on Pattern Recognition, vol. I, pp. 712–716 (1990)Google Scholar
  5. 5.
    Fujishiro, I., Azuma, T., Takeshima, Y.: Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis. In: Proceedings of IEEE Visualization, pp. 367–470 (1999)Google Scholar
  6. 6.
    Greig, D., Porteous, B., Seheult, A.: Exact map estimation for binary images. J. Roy. Stat. Soc. B. 51, 271–279 (1989)Google Scholar
  7. 7.
    Hadwiger, M., Berger, C., Hauser, H.: High quality two-level volume rendering of segmented data sets on consumer graphics hardware. In: Proceedings of IEEE Visualization, pp. 301–308 (2003)Google Scholar
  8. 8.
    Hastreiter, P., Ertl, T.: Fast and interactive 3D-segmentation of medical volume data. In: Computer Graphics International, Visualization Minisymposium, pp. 78–85 (1998)Google Scholar
  9. 9.
    Hauser, H., Mroz, L., Bischi, G.I., Gröller, M.E.: Two-level volume rendering. IEEE Trans. Visual. Comput. Graph. 7(3), 242–252 (2001)Google Scholar
  10. 10.
    He, T., Hong, L., Kaufman, A., Pfister, H.: Generation of transfer functions using stochastic search techniques. In: Proceedings of IEEE Visualization, pp. 227–234 (1997)Google Scholar
  11. 11.
    Huang, R., Ma, K.L.: RGVis: Region growing based visualization techniques for volume visualization. In: Proceedings of Pacific Graphics Conference, pp. 335–333 (2003)Google Scholar
  12. 12.
    Incorp., A.S.: Adobe photoshop user guide (2002)Google Scholar
  13. 13.
    Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. Visual. Comput. Graph. 8(3), 270–285 (2002)Google Scholar
  14. 14.
    Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004)Google Scholar
  15. 15.
    Marks, J., Andalman, B., Beardsley, P.: Design galleries: A general approach to setting parameters for computer graphics and animation. SIGGRAPH ’97 pp. 389–400 (1997)Google Scholar
  16. 16.
    McGuffin, M.J., Tancau, L., Balakrishnan, R.: Using deformations for browsing volumetric data. In: Proceedings of IEEE Visualization, pp. 401–408 (2003)Google Scholar
  17. 17.
    Mortensen, E.N.: Vision-assisted image editing. Computer Graphics 33(4), 55–57 (1999)Google Scholar
  18. 18.
    Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Computer Graphics (SIGGRAPH ‘95), pp. 191–198 (1995)Google Scholar
  19. 19.
    Mortensen, E.N., Barrett, W.A.: Toboggan-based intelligent scissors with a four parameter edge model. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR ’99), vol. 2, pp. 452–458 (1999)Google Scholar
  20. 20.
    Mortensen, E.N., Reese, L.J., Barrett, W.A.: Intelligent selection tools. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR ’00), vol. 2, pp. 776–777 (2000)Google Scholar
  21. 21.
    Owada, S., Nielsen, F., Igarashi, T.: Volume catcher. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games (I3D ’05), pp. 111–116 (2005)Google Scholar
  22. 22.
    Reese, L.: Intelligent paint: Region-based interactive image segmentation. Master thesis, Department of Computer Science, Brigham Young University, Provo, UT (1999)Google Scholar
  23. 23.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)Google Scholar
  24. 24.
    Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its application to transfer function design. Graph. Models 66(1), 24–49 (2004)Google Scholar
  25. 25.
    Tan, K.H., Ahuja, N.: Selecting objects with freehand sketches. In: Proceedings IEEE International Conference on Computer Vision (ICCV ’01), vol. 1, pp. 337–344 (2001)Google Scholar
  26. 26.
    Tzeng, F.Y., Lum, E., Ma, K.L.: A novel interface for higher-dimensional classification of volume data. In: Proceedings of IEEE Visualization, pp. 505–512 (2003)Google Scholar
  27. 27.
    Tzeng, F.Y., Ma, K.L.: A cluster-space visual interface for arbitrary dimensional classification of volume data. In: Proceedings of Joint IEEE/EG Symposium on Visualization (VisSym ’04), pp. 17–24 (2004)Google Scholar
  28. 28.
    Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven volume rendering. In: Proceedings of IEEE Visualization, pp. 139–145 (2004)Google Scholar
  29. 29.
    Wang, J., Bhat, P., Colburn, A., Agrawala, M., Cohen, M.F.: Interactive video cutout. ACM Trans. Graph. 24(3), 585–594 (2005)Google Scholar
  30. 30.
    Yao, X., Hung, Y.P.: Fast image segmentation by sliding in the derivative terrain. In: SPIE Proc. Intelligent Robots and Computer Vision X: Algorithms and Techniques, vol. 1607, pp. 369–379 (1991)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Xiaoru Yuan
    • 1
  • Nan Zhang
    • 1
  • Minh X. Nguyen
    • 1
  • Baoquan Chen
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Minnesota at Twin CitiesMinneapolisUSA

Personalised recommendations