The Visual Computer

, Volume 21, Issue 8–10, pp 840–847

What’s in an image?

Towards the computation of the “best” view of an object
  • Oleg Polonsky
  • Giuseppe Patané
  • Silvia Biasotti
  • Craig Gotsman
  • Michela Spagnuolo
original article

Abstract

There are many possible 2D views of a given 3D object and most people would agree that some views are more aesthetic and/or more “informative” than others. Thus, it would be very useful, in many applications, to be able to automatically compute these “best” views. Although all measures of the quality of a view will ultimately be subjective, hence difficult to quantify, we propose some general principles which may be used to address this challenge. In particular, we describe a number of different ways to measure the goodness of a view, and show how to optimize these measures by reducing the size of the search space.

Keywords

Visualization View entropy Scene composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbel, T., Ferrie, F.P.: Viewpoint selection by navigation through entropy maps. In: Proceedings of the International Conference on Computer Vision, Corfu, Greece, 20–25 September 1999, vol. I, pp. 248–254Google Scholar
  2. 2.
    Barral, P., Dorme, G., Plemenos, D.: Scene understanding techniques using a virtual camera. In: de Sousa A., Torres J.C. (eds.) Proceedings of Eurographics 2000, Interlaken, Switzerland, 20–25 August 2000, vol. 19Google Scholar
  3. 3.
    Biasotti, S.: Computational topology methods for shape modelling applications. Dissertation, Universitá degli Studi di Genova (2004)Google Scholar
  4. 4.
    Bierderman, I.: Recognition-by-components: A theory of human image understanding. Psych. Rev. 94(2), 115–147 (1987)Google Scholar
  5. 5.
    Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1933)Google Scholar
  6. 6.
    Birkhoff, G.D.: Mathematics of aesthetics. In: Newman J.R. (ed.) The World of Mathematics, vol. 4, Simon and Schuster, New York (1956)Google Scholar
  7. 7.
    Blanz, V., Tarr, M., Bülthoff, H.: What object attributes determine canonical views? Perception 28, 575–599 (1999)Google Scholar
  8. 8.
    Bülthoff, H.H., Edelman, S.Y., Tarr, M.J.: How are three-dimensional objects represented in the brain? Cerebral Cortex 5(3), 247–260 (1995)Google Scholar
  9. 9.
    Dey, T.K., Giesen, J., Goswami, S.: Shape segmentation and matching with flow discretization. In: Proceedings of the Workshop on Algorithms and Data Structures, Ottawa, Ontario, Canada, 30 July–1 August 2003, pp. 25–36Google Scholar
  10. 10.
    Elad, M., Tal, A., Ar, S.: Directed search in a 3D objects database using SVM. Tech. Rep. HPL-2000-20R1, HP Labs (2000)Google Scholar
  11. 11.
    Elad, M., Tal, A., Ar, S.: Content based retrieval of VRML objects: an iterative and interactive approach. In: Proceedings of the 6th Eurographics Workshop on Multimedia, Manchester, UK , September 2001, pp. 107–118Google Scholar
  12. 12.
    Gómez, F., Hurtado, F., Sellarès, J.A., Toussaint, G.T.: Nice perspective projections. Vis. Commun. Image Represent. 12, 387–400 (2001)Google Scholar
  13. 13.
    Gooch, B., Reinhard, E., Moulding, C., Shirley, P.: Artistic composition for image creation. In: Proceedings of Eurographics Workshop on Rendering Techniques, London, UK, 25–27 June 2001, pp. 83–88Google Scholar
  14. 14.
    Jolliffe, I.: Principal Component Analysis. Springer, Berlin Heidelberg New York (1986)Google Scholar
  15. 15.
    Kamada, T., Kawai, S.: A simple method for computing general position in displaying three-dimensional objects. Comput. Vis. Graph. Image Process. 41(1), 43–56 (1988)Google Scholar
  16. 16.
    Koenderink, J.J., van Doorn, A.J.: The internal representation of solid shape with respect to vision. Biol. Cyber. 32(4), 211–216 (1979)Google Scholar
  17. 17.
    Lee, C.H., Varshney, A., Jacobs, D.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)Google Scholar
  18. 18.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, New York (1982)Google Scholar
  19. 19.
    Milnor, J.: Morse Theory. Princeton University Press, NJ (1963)Google Scholar
  20. 20.
    Page, D.L., Koschan, A., Sukumar, S.R., Roui-Abidi, B., Abidi, M.A.: Shape analysis algorithm based on information theory. In: Proceedings of the IEEE International Conference on Image Processing, Barcelona, Catalonia, Spain, 14–18 September 2003, vol. I, pp. 229–232Google Scholar
  21. 21.
    Palmer, S.E., Rosch, E., Chase, P.: Canonical perspective and the perception of objects. Attent. Perform. IX, 135–151 (1981)Google Scholar
  22. 22.
    Plemenos, D., Benayada, M.: Intelligent display in scene modeling. New techniques to automatically compute good views. In: Proceedings of GraphiCon, St. Petersburg, Russia, July 1996Google Scholar
  23. 23.
    Roberts, D.R., Marshall, A.D.: Viewpoint selection for complete surface coverage of three dimensional objects. In: Proceedings of the British Machine Vision Conference, Southampton, UK, 1998, vol. II, pp. 740–750Google Scholar
  24. 24.
    Stoev, S.L., Straßer, W.: A case study on automatic camera placement and motion for visualizing historical data. In: Proceedings of IEEE Visualization, Boston, MA, 2002, pp. 545–548Google Scholar
  25. 25.
    Tarr, M., Kriegman, D.: What defines a view? Vis. Res. 41(15), 1981–2004 (2001)Google Scholar
  26. 26.
    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of VMV, Stuttgart, Germany, 21–23 November 2001, pp. 273–280Google Scholar
  27. 27.
    Weinshall, D., Werman, M.: On view likelihood and stability. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 97–108 (1997)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Oleg Polonsky
    • 1
  • Giuseppe Patané
    • 2
  • Silvia Biasotti
    • 2
  • Craig Gotsman
    • 3
  • Michela Spagnuolo
    • 2
  1. 1.TechnionIsrael Institute of TechnologyIsrael
  2. 2.IMATI/CNRGenovaItaly
  3. 3.Harvard UniversityUSA

Personalised recommendations