Advertisement

The Visual Computer

, Volume 21, Issue 8–10, pp 669–678 | Cite as

Geometry completion and detail generation by texture synthesis

  • Minh X. Nguyen
  • Xiaoru Yuan
  • Baoquan Chen
original article

Abstract

We present a novel method for patching holes in polygonal meshes and synthesizing surfaces with details based on existing geometry. The most novel feature of our proposed method is that we transform the 3D geometry synthesis problem into a 2D domain by parameterizing surfaces and solve this problem in that domain. We then derive local geometry gradient images that encode intrinsic local geometry properties, which are invariant to object translation and rotation. The 3D geometry of holes is then reconstructed from synthesized local gradient images. This method can be extended to execute other mesh editing operations such as geometry detail transfer or synthesis. The resulting major benefits of performing geometry synthesis in 2D are more flexible and robust control, better leveraging of the wealth of current 2D image completion methods, and greater efficiency.

Keywords

Detail preservation Geometry image and Mesh editing Partial differential equation Surface completion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 347–354. ACM Press, New York (2002)Google Scholar
  2. 2.
    Ashikhmin, M.: Synthesizing natural textures. In: SI3D ’01: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 217–226. ACM Press, New York (2001)Google Scholar
  3. 3.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley, New York (2000)Google Scholar
  4. 4.
    Bhat, P., Ingram, S., Turk, G.: Geometric texture synthesis by example. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 41–44. ACM Press, New York (2004)Google Scholar
  5. 5.
    do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs, NJ (1976)Google Scholar
  6. 6.
    Davis, J., Stephen, Marschner, R., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: 1st International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 428–438 (2002)Google Scholar
  7. 7.
    de Berg, M., van Kerveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 1st edn. Springer, Berlin Heidelberg New York (1997)Google Scholar
  8. 8.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Proceedings of Eurographics, 21(3), 209–218 (2002)Google Scholar
  9. 9.
    Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346. ACM Press, New York (2001)Google Scholar
  10. 10.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–256. ACM Press, New York (2002)Google Scholar
  11. 11.
    Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph. 23(3), 652–663 (2004)Google Scholar
  12. 12.
    Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 355–361. ACM Press, New York (2002)Google Scholar
  13. 13.
    Gu, X., Wang, Y., Chan, T., Thompson, P., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag. 23(7), 949–958 (2004)Google Scholar
  14. 14.
    Gu, X., Yau, S.T.: Global conformal surface parameterization. In: SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 127–137. Eurographics Association, Aire-la-Ville, Switzerland (2003)Google Scholar
  15. 15.
    Haeberli, P.: Paint by numbers: Abstract image representations. In: SIGGRAPH ’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 207–214. ACM Press, New York (1990)Google Scholar
  16. 16.
    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 327–340. ACM Press, New York (2001)Google Scholar
  17. 17.
    Jin, M., Wang, Y., Yau, S.T., Gu, X.: Optimal global conformal surface parameterization. In: IEEE Visualization, pp. 267–274 (2004)Google Scholar
  18. 18.
    Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23(3), 888–895 (2004)Google Scholar
  19. 19.
    Lai, Y.K., Hu, S.M., Gu, D.X., Martin, R.: Geometric texture synthesis and transfer via geometry images. In: SPM ’05: Proceedings of the 2005 ACM symposium on Solid and Physical Modeling, pp. 15–26. ACM Press, New York (2005)Google Scholar
  20. 20.
    Levy, B.: Dual domain extrapolation. ACM Trans. Graph. 22(3), 364–369 (2003)Google Scholar
  21. 21.
    Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)Google Scholar
  22. 22.
    Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001)Google Scholar
  23. 23.
    Liepa, P.: Filling holes in meshes. In: SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 200–205. Eurographics Association, Aire-la-Ville, Switzerland (2003)Google Scholar
  24. 24.
    Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23(3), 488–495 (2004)Google Scholar
  25. 25.
    Pfeifle, R., Seidel, H.P.: Triangular B-splines for blending and filling of polygonal holes. In: Proceedings of the Conference on Graphics Interface ’96, pp. 186–193 (1996)Google Scholar
  26. 26.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)Google Scholar
  27. 27.
    Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. ACM Trans. Graph. 23(3), 878–887 (2004)Google Scholar
  28. 28.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 22(1–3), 21–74 (2002). http://www-2.cs.cmu.edu/∼quake/triangle.htmlGoogle Scholar
  29. 29.
    Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: ICCV ’95: Proceedings of the 5th International Conference on Computer Vision, p. 902. IEEE Press, Washington, DC (1995)Google Scholar
  30. 30.
    Verdera, J., Caselles, V., Bertalmio, M., Sapiro, G.: Inpainting surface holes. In: Proceedings of the International Conference on Image Processing, pp. 903–906 (2003)Google Scholar
  31. 31.
    Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 479–488. ACM Press/Addison-Wesley, New York (2000)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of Minnesota at Twin CitiesMinneapolisUSA

Personalised recommendations