The Visual Computer

, Volume 21, Issue 11, pp 945–955

Computing hierarchical curve-skeletons of 3D objects

  • Nicu D. Cornea
  • Deborah Silver
  • Xiaosong Yuan
  • Raman Balasubramanian
original article


A curve-skeleton of a 3D object is a stick-like figure or centerline representation of that object. It is used for diverse applications, including virtual colonoscopy and animation. In this paper, we introduce the concept of hierarchical curve-skeletons and describe a general and robust methodology that computes a family of increasingly detailed curve-skeletons. The algorithm is based upon computing a repulsive force field over a discretization of the 3D object and using topological characteristics of the resulting vector field, such as critical points and critical curves, to extract the curve-skeleton. We demonstrate this method on many different types of 3D objects (volumetric, polygonal and scattered point sets) and discuss various extensions of this approach.


3D curve-skeleton Repulsive force field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Hamid, G., Yang. Y.: Multiresolution skeletonization: An electrostatic field-based approach. Proc. IEEE International Conference on Image Processing (1):949–953 (1994)Google Scholar
  2. 2.
    Ahuja, N., Chuang, J.-H.: Shape representation using a generalized potential field model. IEEE Trans. Pattern Analysis and Machine Intelligence 19(2):169–176 (1997)CrossRefGoogle Scholar
  3. 3.
    Amenta, N., Choi, S., Kolluri, R.-K.: The power crust. Proc. of 6th ACM Symp. on Solid Modeling, pp. 249–260 (2001)Google Scholar
  4. 4.
    Medial Axis/Surface Transform Website∼min/meshclass/Google Scholar
  5. 5.
    Aylward, S.-R., Jomier, J., Weeks, S., Bullitt, E.: Registration and analysis of vascular images. International Journal of Computer Vision 55 (2–3): 123–138 (2003)Google Scholar
  6. 6.
    Aylward, S.-R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Medical Imaging 21(2): 61–75 (2002)CrossRefGoogle Scholar
  7. 7.
    Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53:484–512 (1984)CrossRefGoogle Scholar
  8. 8.
    Bloomenthal, J.: Medial based vertex deformation. Proc. ACM SIGGRAPH/Eurographics Symposium On Computer Animation, pp. 147–151 (2002)Google Scholar
  9. 9.
    Blum, H.: A transformation for extraction new descriptors of shape. Models for the Perception of Speech and Visual Form, MIT Press, pp. 362–380 (1967)Google Scholar
  10. 10.
    Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. Proc. European Conf. on Computer Vision, pp. 603–618 (2000)Google Scholar
  11. 11.
    Brennecke, A., Isenberg, T.: 3D Shape Matching Using Skeleton Graphs. Simulation und Visualisierung (SimVis), SCS European Publishing House, Erlangen, San Diego, pp. 299–310 (2004)Google Scholar
  12. 12.
    Chuang, J.-H., Tsai, C., Ko, M.-C.: Skeletonization of three-dimensional object using generalized potential field. IEEE Trans. Pattern Analysis and Machine Intelligence 22(11):1241–1251 (2000)Google Scholar
  13. 13.
    Dickinson, R.-R.: Interactive analysis of the topology of 4D vector fields. IBM Journal of Research and Development 35(1/2):59–66 (1991)Google Scholar
  14. 14.
    Fang, S., Chen, H.: Hardware accelerated voxelization. Computers and Graphics 24(3):433–442 (2000)CrossRefGoogle Scholar
  15. 15.
    Gagvani, N., Silver, D.: Parameter controlled volume thinning. Graphical Models and Image Processing 61(3):149–164 (1999)CrossRefGoogle Scholar
  16. 16.
    Gagvani, N., Silver, D.: Animating volumetric models. Graphical Models 63(6):443–458 (2001)CrossRefGoogle Scholar
  17. 17.
    Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. Proc. IEEE Visualization, pp. 33–40 (1991)Google Scholar
  18. 18.
    Grigorishin, T., Yang, Y.-H.: Skeletonization: An electrostatic field-based approach. Pattern Analysis and Applications 1:163–177 (1998)CrossRefGoogle Scholar
  19. 19.
    Hameiri, E., Shimshoni, I.: Estimating the principal curvatures and the Darboux frame from read 3D range data. 1st International Symposium on 3D Data Processing Visualization and Transmission, pp. 258–267 (2002)Google Scholar
  20. 20.
    He, T., Hong, L., Chen, D., Liang, Z.: Reliable Path for Virtual Endoscopy: Ensuring Complete Examination of Human Organs. IEEE Trans. Visualization and Computer Graphics 7(4):333–342 (2001)Google Scholar
  21. 21.
    Helman, J.-L., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications 11(3):36–46 (1991)CrossRefGoogle Scholar
  22. 22.
    Kanitsar ,A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.-E.: CPR: Curved planar reformation. Proc. IEEE Visualization, pp. 37–44 (2002)Google Scholar
  23. 23.
    Kanitsar, A., Wegenkittl, R., Fleischmann, D., Grõller, M.-E.: Advanced curved planar reformation: flattening of vascular structures. Proc. IEEE Visualization, pp. 43–50 (2003)Google Scholar
  24. 24.
    Kong, T.-Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3):357–393 (1989)Google Scholar
  25. 25.
    Leymarie, F., Levine, M.: Simulating the grassfire transform using an active contour model. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(1):56–75 (1992)CrossRefGoogle Scholar
  26. 26.
    Leymarie, F.: 3D Shape Representation via the Shock Scaffold. Ph.D. Thesis, Brown University, Providence, USA (2003)Google Scholar
  27. 27.
    Liu, P., Wu, F., Ma, W., Liang, R., Ouhyoung, M.: Automatic animation skeleton construction using repulsive force field. Proc. IEEE 11th Pacific Conference on Computer Graphics and Applications, pp. 409 (2003)Google Scholar
  28. 28.
    Ma, W., Wu, F., Ouhyoung, M.: Skeleton extraction of 3D objects with radial basis functions. Proc. Shape Modeling International, pp. 207–215 (2003)Google Scholar
  29. 29.
    Manzanera, A., Bernard, T., Preteux, F., Longuet, B.: Medial faces from a concise 3D thinning algorithm, Proc. IEEE International Conference on Computer Vision, pp. 337–343 (1999)Google Scholar
  30. 30.
    Palagyi, K., Kuba, A.: Directional 3D Thinning using 8 subiterations. Proc. Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science 1568:325–336 (1999)Google Scholar
  31. 31.
    Perry, A.-E., Chong, M.-S.: A description of eddying motions and flow patterns using critical-point voncepts. Ann. Review of Fluid Mechanics 19:125–155 (1987)CrossRefGoogle Scholar
  32. 32.
    Pizer, S.-M., Fritsch, D.-S., Yushkevich, P.-A., Johnson, V.-E., Chaney, E.-L.: Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans. Medical Imaging 18(10):851–865 (1999)CrossRefGoogle Scholar
  33. 33.
    Pizer, S., Siddiqi, K., Szekely, G., Damon, J., Zucker, S.: Multiscale medial loci and their property. International Journal of Computer Vision 55(2–3):155–179 (2003)Google Scholar
  34. 34.
    Schirmacher, H., Zockler, M., Stalling, D., Hege, H.: Boundary surface shrinking — A continuous approach to 3D center line extraction. Proc. Image and Multidimensional Digital Signal Processing, pp. 25–28 (1998)Google Scholar
  35. 35.
    Sebastian, T., Klein, P., Kimia, B.: Shock-based indexing into large shape databases. Proc. European Conference on Computer Vision 3:731–746 (2002)Google Scholar
  36. 36.
    3D Studio Max (3DSMax), Discreet, www.discreet.comGoogle Scholar
  37. 37.
    Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. Shape Modeling and Applications, pp. 130–138 (2003)Google Scholar
  38. 38.
    Svensson, S., Nystrom, I., Sanniti di Baja, G.: Curve skeletonization of surface-like objects in 3D images guided by voxel classification. Pattern Recognition Letters 23(12):1419–1426 (2002)CrossRefGoogle Scholar
  39. 39.
    Tal, A., Katz, S.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graphics, 22(3):954–961 (2003)Google Scholar
  40. 40.
    Telea, A., Vilanova, A.: A robust level-set algorithm for centerline extraction. Eurographics/IEEE/TCVG Symp. on Visualization, pp. 185–194 (2003)Google Scholar
  41. 41.
    Verroust, A., Lazarus, F.: Extracting skeletal curves from 3D scattered data. The Visual Computer 16(1):15–25 (2000)Google Scholar
  42. 42.
    Wade, L., Parent, R.-E.: Automated generation of control skeletons for use in animation. The Visual Computer 18:97–110 (2002)CrossRefGoogle Scholar
  43. 43.
    Vizlab Website, Rutgers, The State University of New Jersey: Scholar
  44. 44.
    Wu, F.-C., Ma, W.-C., Liou, P.-C., Liang, R.-H., Ouhyoung, M.: Skeleton extraction of 3D objects with visible repulsive force. Computer Graphics Workshop 2003, Hua-Lien, Taiwan (2003)Google Scholar
  45. 45.
    Zhou, Y., Kaufman, A., Toga, A.-W.: Three-dimensional skeleton and centerline generation based on an approximate minimum distance field. The Visual Computer 14:303–314 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Nicu D. Cornea
    • 1
  • Deborah Silver
    • 1
  • Xiaosong Yuan
    • 1
  • Raman Balasubramanian
    • 1
  1. 1.Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations